建模用户的长期和短期兴趣对于准确的推荐至关重要。然而,由于缺乏手动标注用户兴趣的标签,现有方法常常将长短期兴趣纠缠在一起,导致推荐的准确性和可解释性不佳。为解决这一问题,提出了一种对比学习框架,专注于将长期和短期兴趣的推荐分开。我们首先引入了独立的编码器,分别捕捉不同时间尺度下的用户兴趣。然后,通过从交互序列中提取长期和短期兴趣的代理标签,来监督兴趣表示与其相似性。最后,考虑到长短期兴趣的动态变化,我们提出了基于注意力机制的自适应聚合方法来进行预测。我们在电子商务和短视频推荐的两个大规模真实数据集上进行了实验,结果显示,所提出的方法始终优于现有的模型,显著提高了推荐效果:GAUC提升超过0.01,NDCG提升超过4%。进一步的反事实评估表明,本方法成功实现了长期和短期兴趣的更强解耦。
基于解耦长短期兴趣的用户兴趣建模新方法
相关推荐
双馈感应电机解耦控制的新方法
双馈感应电机解耦控制是电力系统中的重要技术,其通过新的控制方法实现了对电力传输的高效优化。详细探讨了这一技术在提高发电效率和稳定性方面的应用。通过实验验证,新方法不仅提升了系统的响应速度,还减少了系统中的能量损耗。这些创新将有助于未来电力系统的可持续发展。
Matlab
10
2024-07-29
兴趣区域检测代码的源码
这是兴趣区域检测的源代码,解压后放置在MATLAB的搜索路径下,然后调用guiSaliecy()函数即可。
Matlab
9
2024-08-23
基于大数据技术的社交网络用户兴趣个性化推荐模型研究
为了克服传统分析方法易受噪声和人为因素干扰导致分析结果不准确的缺陷,本研究提出了一种基于大数据的社交网络用户兴趣个性化推荐模型。该模型以矢量空间模型为基础,深入分析了用户兴趣推荐模型的结构及其与周边模型的交互关系,并在此基础上划分了服务器网络部署模块,设计了模型的运行网络结构。为了提高模型的效率和可扩展性,本研究利用MapReduce模型将任务分发到分布式计算机集群中,从而构建出能够满足用户个性化需求的推荐模型。此外,模型还利用了大数据双层关联规则数据挖掘技术来获取用户感兴趣的网络数据,并根据推荐结果评估用户对推荐内容的兴趣程度。实验结果显示,该分析方法的准确率高达98%,且对大规模社交网络用
数据挖掘
14
2024-05-25
基于数据挖掘的模块评估新方法
随着软件工程的发展,评估软件产品变得日益重要。传统的主观经验和有限数据集评估方法准确性有限。为解决这一问题,尹云飞等人提出了一种创新的基于数据挖掘的模块评估新方法,采用模糊聚类技术提高评估精确度和有效性。
数据挖掘
8
2024-09-24
挖掘关联规则的新方法
关联规则挖掘在事务数据库中的应用越来越广泛。单维布尔方法提供了可伸缩的算法,用于挖掘各种关联和相关规则。基于限制的关联挖掘和顺序模式挖掘都是当前研究的重点。
算法与数据结构
5
2024-07-22
考研单词学习的新方法
看待考研单词学习,有了新的视角。
Memcached
6
2024-08-16
基于兴趣度的关联规则在学术分析中的应用
在关联规则经典算法Apriori的基础上,分析并将其应用于学术分析系统。发现并解决了现有系统中的问题,通过增加兴趣度阈值提升了关联规则在数据挖掘中的准确性,有效减少了无效规则的生成,为学术选课系统的优化提供了重要支持。
数据挖掘
10
2024-07-17
Access密码解锁新方法
解锁ACCESS密码的全新技术,能够快速、高效地破解,避免使用传统的穷举法。
Access
7
2024-08-19
SqlServer列转行的创新方法
SqlServer列转行的新探索!
SQLServer
10
2024-07-14