传统的数据分析方法通常以精度为评估标准,但在工业大数据应用中,仅仅依赖精度无法保证分析结果的有效性。因此,必须全面评估数据分析的质量。传统的模型评估和验证主要依赖精度,而高精度并非总是意味着良好的结果。除了常规的误差计算方式外,应考虑更全面的验证方法,包括最大误差的衡量,以应对数据本身可能存在的问题。