在大数据环境下,关联规则挖掘是数据挖掘中的重要技术之一。它基于约束来发现数据中的关联性,包括知识类型约束、数据约束、维/层次约束、规则约束和兴趣度约束等。
大数据环境下的关联规则挖掘方法
相关推荐
分布式环境下Paillier同态加密的关联规则挖掘
在隐私保护数据挖掘领域,如何在保障数据安全性的前提下,不损失挖掘精度一直是一项挑战。为解决这一问题,我们提出了一种基于Paillier同态加密的关联规则挖掘方法,该方法适用于分布式环境。
方法特点:
计算与解密分离: 采用计算方和解密方分离的策略,有效保障数据挖掘过程的安全性。
精度无损: 利用同态加密特性,在不解密数据的情况下进行计算,确保挖掘精度不受影响。
效率提升: 引入蒙哥马利算法优化Paillier算法,降低计算开销,保证算法效率。
实验结果表明,该方法在引入加解密过程后,整体开销依然处于可接受范围,验证了其在实际应用中的可行性。
数据挖掘
3
2024-05-24
挖掘关联规则的新方法
关联规则挖掘在事务数据库中的应用越来越广泛。单维布尔方法提供了可伸缩的算法,用于挖掘各种关联和相关规则。基于限制的关联挖掘和顺序模式挖掘都是当前研究的重点。
算法与数据结构
1
2024-07-22
数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
数据挖掘
3
2024-05-31
数据挖掘中关联规则挖掘
关联规则挖掘是一种在交易数据、关系数据等信息载体中寻找频繁模式、关联、相关性或因果结构的方法。
算法与数据结构
7
2024-04-30
关联规则数据挖掘算法
Apriori算法Apriori算法是关联规则数据挖掘算法的代表,它使用迭代的方法生成候选频繁项集,并使用支持度和置信度阈值来过滤非频繁项集。
Apriori算法的改进Apriori算法的改进版本包括:- FP-Growth算法:使用了一种基于FP树的数据结构,可以更高效地生成频繁项集。- Eclat算法:采用了一种基于集合论的方法,可以并行生成频繁项集。- PrefixSpan算法:专用于序列数据,可以发现序列模式。
数据挖掘
2
2024-05-25
数据挖掘中的关联规则挖掘技术
数据挖掘是从海量数据中发现有价值知识的过程,涉及多种技术和方法。讨论了关联规则挖掘,即从大型数据库中寻找项之间的有趣关联或频繁模式。关联规则通常表述为“如果事件A发生,那么事件B也可能发生”。挖掘包括从交易数据库中挖掘一维布尔形关联规则和多层次关联规则。在食品零售场景中,例如,“牛奶→面包”和“酸奶→黄面包”等多层次关联规则揭示了项目之间的关联。多层关联规则的挖掘通过自上而下的深度优先方法进行,控制规则的数量可以通过支持度递减策略来实现。此外,文档讨论了数据挖掘查询的逐步精化策略,以在速度和精度之间找到平衡。空间关联规则挖掘中的两步算法也有所涉及,首先进行粗略的空间计算,然后用细致的算法进行精化。关联规则挖掘为企业决策和市场分析提供有价值的洞察。
数据挖掘
0
2024-09-14
关联规则挖掘综述
关联规则挖掘该研究概述了关联规则挖掘技术的定义、分类、挖掘方法和模式。分析了关联规则挖掘质量的改善问题和领域应用。
数据挖掘
2
2024-05-19
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如:
牛奶 → 面包 [20%, 60%]
酸奶 → 黄面包 [6%, 50%]
数据挖掘
2
2024-05-25
关联规则挖掘基于T统计量方法
提出一种基于T统计量的关联规则挖掘方法,使用显著度取代置信度,挖掘出的规则具有统计显著性。
数据挖掘
7
2024-05-13