相空间重构在混沌多步预测中起着关键作用,首先计算第M点与其他点的距离,然后按照距离排序选择第M点的(m+1)个邻近参考点。这一方法在非线性时间序列预测中具有重要意义。
混沌多步预测方法研究
相关推荐
透明预测:研究论文
本论文探讨了政府使用计算机化流程预测人类行为的能力,关注缺乏透明度的严重关注。论文提出一个全面的概念框架,了解透明性在自动预测建模中的作用。分析了预测建模过程的信息流,提出了实现透明度的策略。论文寻求透明性的根源,分析了限制透明度的反对论点。最后,论文提供了一个创新的政策框架,以实现透明度。
数据挖掘
3
2024-04-29
基于动态轨迹模式挖掘的位置预测方法研究
针对海量用户轨迹数据,该研究提出了一种名为PRED的动态轨迹模式分析和位置预测方法。PRED方法首先利用改进的模式挖掘模型从轨迹数据中提取频繁模式(T-模式)。随后,该方法使用DPTUpdate算法构建名为DPT(dynamic pattern tree)的快捷数据结构,该结构蕴涵时空信息,用于存储和查询移动对象的T-模式。最后,PRED方法通过Prediction算法计算最佳匹配度,预测移动对象的轨迹位置。基于真实数据集的对比实验结果表明,PRED方法能够提供动态分析能力,其平均准确率达到72%,平均覆盖率达到92.1%,相较于现有方法,预测效果显著提升。
数据挖掘
4
2024-05-26
混沌粒子群算法的优化方法
混沌粒子群算法是将混沌运动与传统粒子群算法结合的一种新型优化方法,其独特的全局搜索能力可以有效提升算法性能。
Matlab
0
2024-09-23
基于统计学方法的页岩孔容预测研究
页岩气储集空间与储层矿物特征密切相关。本研究以四川盆地东缘龙马溪组页岩为对象,结合矿物组成、微量元素及地球化学测试结果,利用低温氮气吸附法和高分辨率成像技术,采用多元统计分析方法建立了页岩孔容预测方程。研究分析了孔隙分布特征及其影响因素。研究结果显示,龙马溪组中部和底部页岩组分含量差异显著,生物成因的自生石英是底部石英含量高的主要原因。页岩主要呈现纳米级孔隙,其中2~5 nm孔隙占主导,贡献率在64.2%~70.1%之间。本研究建立的页岩组分含量与孔容预测模型具有高度显著性。脆性矿物孔、黏土矿物片间孔及其粒内孔是富黏土矿物页岩的主要孔隙类型,呈微缝状,小于2 nm孔隙不发育。有机质含量是影响页岩孔容大小的主要控制因素,有机质孔的面积率介于8.8%~12.5%之间。有机质含量及成熟度是影响小于2 nm微孔发育的主要因素,而大于50 nm孔隙的发育则受黏土矿物、石英及长石含量的控制。
统计分析
2
2024-07-13
混沌密码学的加密解密方法
混沌密码学是一种新型的加密解密技术,特别适用于图像加密解密。这种技术的安全性和效率已经得到广泛认可,用户可以放心下载使用。
Matlab
0
2024-08-09
基于自组织模式识别的经济预测方法研究
基于自组织模式识别的经济预测方法研究
将自组织数据挖掘方法与经济预测原则相结合,提出了一种全新的自组织模式识别方法。该方法创新性地采用了数据分组处理和自动合成技术,能够有效地识别多个相似模式,为经济预测提供了更为便捷和高效的途径。通过实际案例分析,验证了该方法在经济预测中的有效性和实用性。此外,针对样本数据不足的问题,提出了增加同类经济对象样本数据的解决方案,进一步提高了预测的准确性和可靠性。
数据挖掘
4
2024-05-25
基于系统云灰色预测的数据挖掘方法研究(2004年)
探讨了系统云灰色预测模型的构建原理,并详细论证了其积分生成机制。进一步深入研究了解析预测公式的应用,特别结合数据库中“贫”信息和小样本序列数据的特征。通过实例分析,比较了解析预测与离散预测的效果,凸显了其简便、详尽和直观的优势。
数据挖掘
2
2024-07-31
中学生饮酒行为预测研究 - 新方法探索
研究显示,社交互动和饮酒会导致特定的行为模式,近期研究建议区分焦虑和抑郁情绪的特定应对方式。数据挖掘技术被用来预测中学生的饮酒动机。然而,现有预处理系统的数据挖掘模型未能有效识别出对预测中学生酒精消费强度有益的相关属性。为了克服这一挑战,我们提出了一种名为多阶段预处理(MSP)的系统,利用离散化和特征选择阶段,从中学生的行为中提取最相关的属性。该系统不仅能够预测学生的酒精消费强度,还能识别酒精成瘾的风险。我们进行了综合实验,使用了基于相关性的特征选择方法如CFS、IG、CS和Relief-F。实验结果显示,这些特征选择方法显著提高了分类性能,在准确度、灵敏度、精度、F-measure和ROC-area等指标上表现出色。
数据挖掘
0
2024-09-13
数学建模预测方法
数学建模中应用的预测方法提供了对未来事件或趋势的定量估计。这些方法包括回归分析、时间序列分析和神经网络,它们利用历史数据来创建模型,并根据该模型对未来做出预测。预测方法在各种建模应用中至关重要,包括需求预测、风险分析和决策支持。
算法与数据结构
3
2024-05-13