01背包问题是一个经典的组合优化问题,涉及算法和动态规划。其核心是在不超过背包容量限制的情况下,选择物品以最大化总价值。动态规划通过构建二维数组来解决该问题,避免重复计算,并确定每个物品的选择以及对应的最大价值。具体算法实现如下:初始化一个二维数组dp,其中dp[i][j]表示在前i个物品中,总重量不超过j时的最大价值。使用状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-wt[i-1]] + val[i-1])来填充dp数组。最终的最大价值存储在dp[n][W]中,其中n是物品数量,W是背包容量。动态规划解决方案确保了在给定条件下找到最优解。