为了将网格技术与数据挖掘技术结合,提出了一种基于网格平台的数据挖掘服务模式,并对Apriori算法进行了改进,以适用于该模式。
基于网格平台的数据挖掘服务模式及其改进算法(2005年)
相关推荐
基于网格的聚类算法优化及其应用探讨
介绍了典型算法,如CLIQUE聚类算法和WaveCluster聚类算法等。在机器学习中,聚类算法是一种无监督分类算法,包括基于划分的聚类算法(如kmeans)、基于层次的聚类算法(如BIRCH)、基于密度的聚类算法(如DBScan)和基于网格的聚类算法。基于网格的方法能够更好地处理非凸形状的簇,并降低计算复杂度。STING算法采用多分辨率网格,通过层次结构将空间分割为不同大小的单元,查询算法通过比较每个单元格的属性值与查询条件,逐渐缩小范围,最终找到满足条件的簇。CLIQUE算法结合了密度和网格思想,能够发现任意形状的簇,并处理高维数据。WaveCluster算法使用小波分析改进了聚类边界检测
数据挖掘
4
2024-10-12
基于 Web 服务的网格环境下分布式数据挖掘框架
随着分布式知识发现和挖掘在网格环境中日益受到关注,如何应对数据自治、异构和地理分布等挑战成为关键。为此,文中提出了一个基于网格技术和 Web 服务技术的数据挖掘框架,该框架利用 Web 服务实现资源(数据和算法资源)的共享和动态调用,并在 Globus 3.0 Alpha toolkit 平台上得以实现。
数据挖掘
10
2024-05-23
基于数据挖掘的个性化服务系统* (2002年)
站点个性化系统是利用多种WEB挖掘技术构建的,根据用户的访问模式和当前需求提供实时个性化服务。该系统采用事务聚类、关联规则技术等数据挖掘方法分析用户行为,实验表明其性能优异。
数据挖掘
6
2024-08-08
基于数据挖掘的选线判据改进研究
针对传统选线判据无法精确识别干扰信号、可能导致频繁误跳闸的问题,本研究利用数据挖掘中的K-means算法进行了改进。通过对某支路历史数据的聚类分析,成功区分漏电真零序电流与干扰信号,显著提升了选线判据的准确性。
数据挖掘
7
2024-07-13
基于数据挖掘技术的电力负荷优选组合预测方法(2005年)
日负荷预测精度的提升关键在于数据预处理,提出了基于联合数据挖掘技术的电力负荷优选组合预测方法。利用多种挖掘技术寻找具有高度相似气象特征的历史日负荷数据序列,进而构建优选组合预测模型,强化规律性并减少干扰。
数据挖掘
10
2024-08-03
序列模式-数据挖掘算法解析
序列模式t是指在多个数据序列中发现共同的行为模式。 t通过时间序列搜索出重复发生概率较高的模式,强调时间序列的影响。 例如,在所有购买了激光打印机的人中,半年后80%的人再购买新硒鼓,20%的人用旧硒鼓装碳粉; 在所有购买了彩色电视机的人中,有60%的人再购买VCD产品; 在时序模式中,需要找出在某个最短时间内出现比率一直高于某一最小百分比(阈值)的规则。
数据挖掘
9
2024-07-15
序列模式-数据挖掘算法解析
序列模式t是指在多个数据序列中发现共同的行为模式。t通过时间序列搜索出重复发生概率较高的模式。这里特别强调时间序列的影响。例如,在所有购买了激光打印机的人中,半年后80%的人再购买新硒鼓,20%的人用旧硒鼓装碳粉;在所有购买了彩色电视机的人中,有60%的人再购买VCD产品;在时序模式中,需要找出在某个最短时间内出现比率一直高于某一最小百分比(阈值)的规则。
数据挖掘
6
2024-10-17
开源数据挖掘工具及其在网格计算环境中的应用
DataMiningGrid-开源提供WSRF兼容的数据挖掘工具和服务,基于Globus Toolkit 4、Condor和Triana工作流系统。该工具和服务专为网格计算环境设计,支持高效的数据挖掘任务。详细信息请访问:http://www.datamininggrid.org。版权所有(c) 2008 DataMiningGrid Consortium。
数据挖掘
8
2024-08-30
开源数据挖掘网格环境的WSRF兼容工具和服务
在网格计算环境中,提供了基于Globus Toolkit 4、Condor和Triana工作流系统的开源工具和服务,专为数据挖掘而设计。详情请访问DataMiningGrid联盟网站:http://www.datamininggrid.org。
数据挖掘
7
2024-07-18