泛函分析是数学中的一个分支,主要研究无限维空间上的函数及其性质。它融合了线性代数、实变函数论和拓扑学的概念与方法,通常涉及向量空间上的函数、算子等。泛函分析的重要主题包括线性空间的拓扑结构、范数和内积的引入,以及连续性和收敛性的研究。此外,它还广泛应用于函数空间和算子理论的探讨,例如Lebesgue空间和算子的谱理论。在数学及其应用中,泛函分析发挥着重要作用,涵盖微分方程、量子力学和信号处理等领域。