根据不同情况,对多相合金中的颗粒状第二相进行二值化、颗粒分割、孔洞填充以及滤波等图像预处理,得到离散的多目标黑白二值图像。为了统计分析多个颗粒,提出了多目标边界追踪算法,利用八连通边界追踪得到的每个颗粒的唯一标志点及其边界的Freeman码,从而获得第二相的体积分数、周长、面积、形状因子、平均自由程等特征参数。实验结果验证,该算法在离散多目标统计中表现出了实用性和有效性。
定量金相中的多目标边界追踪与特征分析方法(2004年)
相关推荐
多目标进化优化方法综述(2017年)
详细探讨了多目标优化领域的关键内容,涵盖了NSGA2、NSGA3、MOEA等重要方法,介绍它们在解决多目标优化问题中的应用和优势。
Matlab
0
2024-09-26
Matlab点追踪与边界跟踪技术
描述了Matlab中点追踪与边界跟踪的技术应用。
Matlab
0
2024-09-26
视频中高斯模型的动态目标追踪方法
介绍了一种利用高斯背景提取和运动检测的方法,实现在视频中对动态目标的精准跟踪。附带详细的Matlab程序和相关视频文件,为实现视频监控和分析提供了实用的工具。
Matlab
3
2024-07-22
多目标黏菌算法MOSMA 一种基于Slime Mold的多目标优化方法-matlab开发
介绍了多目标滑模模型算法(MOSMA),这是最近开发的滑模模型算法(SMA)的一种变体,专门用于解决行业中的多目标优化问题。近年来,优化社区提出了多种元启发式和进化优化技术,用于处理这些优化问题。在评估多目标优化(MOO)问题时,这些方法通常会面临解决方案质量低下的问题,而非准确估计帕累托最优解和所有目标函数的分布。SMA方法基于实验室对黏菌振荡行为的观察而来,显示出强大的性能,通过结合最佳食物路径设计。MOSMA算法采用SMA机制进行收敛,并结合精英非支配排序方法来估计帕累托最优解。此外,MOSMA保留了多目标公式,并利用拥挤距离算子来确保所有目标的最佳解决方案覆盖范围扩展。为了验证MOSMA的性能,本研究考虑了41个不同的案例研究。
Matlab
0
2024-08-10
多目标粒子群算法的探索与应用
多目标粒子群算法是一种基于群体智能的优化算法,解决复杂的多目标优化问题。它结合了粒子群算法的搜索机制和多目标优化的需求,通过不断演化的粒子群群体,寻找出多个最优解集合。该算法通常用于解决包括测试函数在内的多种优化问题。
Matlab
2
2024-08-01
2018年以前传统实时目标追踪算法资源汇总
这个文件夹收录了2018年及以前的多种高效实时目标追踪算法源码,主要使用matlab编程,部分算法涉及matlab和C++混合编程。算法包括BACF、DSST、ECO、fDSST、STC、OpenTLD、TLD、SAMF等。
Matlab
0
2024-09-19
多目标进化算法的深入探究
运用反向学习模型的最新多目标进化算法,在优化问题领域取得突破性的进展。
算法与数据结构
4
2024-05-01
江苏2004年火箭增雨降温分析
通过对2004年11 d27次火箭增雨降温作业前后降水与降温情况的分析,重点研究了8月5日常州作业效果,探讨强对流云催化降温机理和作业着眼点,为后续工作提供依据。
统计分析
5
2024-05-01
基于粒子滤波的目标追踪算法
这是一份基于Matlab编写的源程序,实现了粒子滤波算法的详细流程和基本算法原理。
Matlab
2
2024-07-26