搜索历史频繁模式挖掘是《大数据挖掘技术》@复旦课程项目的关键内容,从搜狗实验室用户的查询日志数据(2008年)中发现具有高支持度的关键词频繁二项集。在技术实施方面,我搭建了一个由五台服务器组成的微型Hadoop集群,并用Python实现了Parallel FP-Growth算法的三个MapReduce过程。为了快速开始,请确保已安装Python以及jieba中文分词库。若未安装jieba,请在命令行中执行:pip install jieba # for python pip3 install jieba # for python3,或直接运行无jieba版本的find_pair_nojieba.py(功能上会缺少关键词近似匹配)。只需运行.src/demo/find_pair.py而无需修改任何文件,即可输入您想匹配的查询词。
挖掘搜索历史中的频繁模式《大数据挖掘技术》@复旦课程项目
相关推荐
数据挖掘技术一种高效的最大频繁模式挖掘算法
挖掘最大频繁模式是数据挖掘中的核心问题之一。提出了一种快速算法,利用前缀树压缩数据存储,通过优化节点信息和节点链,直接在前缀树上采用深度优先策略进行挖掘,避免了传统条件模式树的创建,显著提升了挖掘效率。
数据挖掘
2
2024-07-20
频繁模式挖掘算法:观测研究
频繁模式挖掘在数据挖掘中扮演着关键角色,存在多种算法。本研究探索了模式连续挖掘中算法相关的主要问题和挑战。
数据挖掘
5
2024-05-25
金融时序数据频繁模式挖掘算法研究
金融时序数据蕴含着丰富的市场信息,有效挖掘其中的频繁模式对于预测市场趋势、防范金融风险具有重要意义。然而,金融时序数据具有高噪声、高维度的特点,传统频繁模式挖掘算法难以有效应用。
针对上述问题,重点研究面向金融时序数据的快速频繁模式挖掘算法。首先,对金融时序数据进行预处理,降低噪声干扰并提取关键特征;其次,设计高效的频繁模式挖掘算法,降低算法时间复杂度,提高挖掘效率;最后,通过实验验证所提算法在金融时序数据集上的有效性和效率。
的研究成果预期能够为金融市场分析提供新的技术支持,推动金融风险防控和智能决策的发展。
数据挖掘
1
2024-06-11
中南大学软件学院数据挖掘上机作业1的频繁模式挖掘编程任务
中南大学软件学院数据挖掘上机作业1,涉及频繁模式挖掘编程任务。
数据挖掘
2
2024-07-14
基于元组ID传播的多关系频繁模式挖掘
传统的多关系数据挖掘算法通常依赖于物理连接操作, 这在处理大规模数据集时会导致效率低下。为了克服这一限制, 本研究提出了一种新的多关系频繁模式挖掘算法。
该算法的核心思想是利用元组ID传播机制, 在不进行物理连接的情况下, 直接从多个关系中挖掘频繁模式。通过这种方式, 算法可以显著减少计算量和内存消耗, 从而提高挖掘效率。
实验结果表明, 相比于传统的基于连接的方法, 本算法在处理多关系数据时具有更高的效率和可扩展性。
数据挖掘
2
2024-05-25
数据挖掘:探索数据模式的技术
数据挖掘技术涵盖关联分析、分类、聚类、文本挖掘、Web 挖掘、图形挖掘以及流和时间序列挖掘等领域。通过学习数据挖掘,您可以:
掌握数据挖掘和知识发现(KDD)的过程。
分析不同数据挖掘和 KDD 算法的适用性。
设计算法解决分类、聚类问题,并从数据库中识别关联规则。
应用文本挖掘、Web 挖掘、图挖掘以及流和时间序列挖掘的概念和算法。
评估数据挖掘和 KDD 算法的性能,比较和对比不同算法的性能。
评估数据挖掘算法的可伸缩性。
分析影响数据挖掘效率的数据特征。
检查数据挖掘和 KDD 算法的局限性。
数据挖掘
6
2024-05-21
通过建立条件模式库得到频繁集-数据挖掘概念、技术--关联1
建立条件模式库是数据挖掘中一个重要的步骤,它可以帮助识别频繁集,进而揭示数据中隐藏的模式和关联规则。
算法与数据结构
2
2024-07-24
挖掘关联规则的重要性及频繁模式分析
许多重要的数据挖掘任务都建立在频繁模式挖掘的基础之上,涵盖关联、相关性、因果性等多个方面。这包括序列模式、空间模式、时间模式以及多维数据分析。频繁模式挖掘不仅在购物篮分析、交叉销售和直销中有广泛应用,还在点击流分析和DNA序列分析等领域展现出重要价值。
数据挖掘
0
2024-08-12
频繁图模式挖掘质量管理过程分析
论文分析了频繁图模式挖掘的质量管理过程,探讨了影响质量的因素和管理策略。
数据挖掘
3
2024-05-01