这是一个简单的求解旅行商问题 (TSP) 局部最小解的Matlab程序。
基于Matlab的TSP局部最小解求解器
相关推荐
基于进化算法求解TSP问题的Matlab实现
TSP(旅行商问题)是一个典型的NP完全问题,意味着随着问题规模的增加,解决时间呈指数增长。TSP问题要求从一个起始城市出发,经过每个城市恰好一次,最终回到起始城市,使得总路程最短。利用进化算法(如遗传算法)可以有效地近似解决这一问题。
Matlab
9
2024-08-05
Matlab中的TSP问题求解代码示例
TSP(旅行商问题)是一种经典的优化问题,使用遗传算法可以有效解决。以下是在Matlab环境中给出的10个和30个城市实例的成功运行代码示例。
Matlab
12
2024-08-04
基于局部密度峰值的最小生成树聚类算法
该项目包含使用Matlab实现的基于局部密度峰值的最小生成树(MST)聚类算法(LDP-MST)代码。
文件说明:
LDPMST_OPT.m: 实现LDP-MST算法(对应论文中的算法3)。
LDP_Searching.m: 包含算法1和算法2的实现。
LMSTCLU_OPT.m: 基于MST的聚类算法对局部簇进行聚类,并计算密度峰值。
drawcluster2: 用于可视化聚类结果。
综合数据集pacake: 包含实验中使用的综合数据集。
Matlab
16
2024-05-31
非线性摆求解器的开发基于Matlab的非线性摆求解方法
介绍了基于Matlab开发的非线性摆求解器,使用有限差分格式进行求解。
Matlab
11
2024-08-30
遗传算法TSP问题求解
基于遗传算法的 TSP 问题求解,你会发现这段代码挺有意思的。遗传算法通过模拟自然选择来优化解答,的正是著名的旅行商问题(TSP)。用Matlab实现起来也不复杂,代码清晰易懂,适合对优化算法有兴趣的朋友。通过调整算法的选择、交叉、变异等操作,你能有效地找到问题的最优路径。我,这种算法不仅能让你在学术研究中大显身手,也适合应用在实际的路径规划中。如果你正在找相关资源,这些链接可以给你带来一些灵感:简单遗传算法 TSP 问题的 Matlab 实现MATLAB 实现遗传算法与模拟退火算法 TSP 问题Matlab TSP 问题代码优化遗传算法超启发式方法【旅行商问题】使用遗传算法 TSP 问题 m
Matlab
0
2025-06-24
基于MATLAB的局部敏感哈希算法实现
利用MATLAB强大的数学计算和仿真能力,可以高效地实现局部敏感哈希算法(LSH)。LSH算法通过将高维数据点映射到低维空间,并保证相似的数据点在映射后依然保持接近,从而实现快速近邻搜索。
在MATLAB中,可以使用各种工具箱和函数来实现LSH算法,例如 Statistics and Machine Learning Toolbox 提供了创建和操作哈希表的数据结构。
通过编写MATLAB代码,可以定义不同的哈希函数、距离度量方法以及碰撞处理策略,从而构建适合特定数据集和应用场景的LSH算法。
算法与数据结构
16
2024-05-25
基于MATLAB的欧拉方法实现:FMPS求解器探索
FMPS求解器:MATLAB欧拉方法代码解析
此项目探讨利用MATLAB实现欧拉方法,构建快速多粒子(FMPS)求解器。代码解析如下:
1. 核心算法:
欧拉方法作为一种基础数值方法,用于求解常微分方程的近似解。其核心思想是利用当前时刻的函数值和导数值,通过线性近似来估计下一时刻的函数值。
2. 代码结构:
代码主要包含以下模块:
初始化: 设置初始条件,包括时间步长、初始位置和速度等。
迭代计算: 基于欧拉方法公式,进行迭代计算,更新粒子位置和速度。
结果输出: 将计算结果输出或进行可视化展示。
3. 应用示例:
FMPS求解器可应用于多个领域,例如:
流体力学: 模拟流体运动,如粒子
Matlab
15
2024-04-30
MATLAB非线性最小二乘法L-M算法求解器
这套 Matlab 程序挺适合用来非线性最小二乘法问题,是用LM 算法求解 F(x)=0 的方程组。程序支持未知数与方程个数不相等的情形,简单易用,适合在优化问题中做调试。其中,有一些常见的优化方法比如最速下降法、牛顿法、共轭梯度法等等,程序的模块化设计让你可以快速拿来就用。比如,armijo.m就是 Armijo 准则的实现,了一个比较可靠的线搜索方法。而且,这些程序都基于Armijo 非精确线搜索,对于大多数优化问题有。最棒的是,你可以轻松地根据需求调整相关算法,像是使用frcg.m来进行 FR 共轭梯度法优化。整体来说,这些工具不仅能你在 Matlab 中一些复杂的数学模型,还能让你更有
Matlab
0
2025-08-15
Matlab中的最大最小化问题求解技巧
在Matlab中,解决最大最小化问题涉及到优化模型,其中包括定义变量向量x、约束条件beq、lb和ub,以及线性不等式约束矩阵A和等式约束矩阵Aeq。函数c(x)、ceq(x)和F(x)用于评估目标函数,返回相应的向量。在fminimax函数的应用中,我们致力于最小化多目标函数中的最坏情况。
Matlab
7
2024-09-28