图像轮廓生成器绘制图像的水平和垂直轮廓 - MATLAB开发
观察图像的水平或垂直剖面通常具有独特的吸引力。这一功能使您能够选择感兴趣的点,并生成它们的对应轮廓图。
Matlab
0
2024-08-31
基于因子图和GTSAM的告警收敛研究
告警收敛算法框架
本研究结合三种算法设计了告警收敛算法框架,并实现了告警收敛数据挖掘及其可视化。该框架包括:
告警趋势预测算法: 用于判断是否发生了大规模告警。该算法基于接警人每小时统计的历史告警量,利用分位点进行数据去噪和排序重组,建立统计学模型并分析数据分布规律,然后根据极大似然估计求解大规模告警阈值,并用系数补偿进行优化调整,最后输出告警数量阈值的规则文件。
时序关联规则挖掘算法: 用于挖掘具有时序特征的告警关联规则,识别不同时间点发生的告警之间的关联性。
策略关联规则挖掘算法: 用于挖掘与策略相关的告警关联规则,识别不同策略配置下产生的告警之间的关联性。
GTSAM在告警收敛中的应用
GTSAM (Georgia Tech Smoothing and Mapping library) 是一个基于因子图的非线性优化库,可以用于解决各种推理问题,包括SLAM、SFM和传感器融合。本研究将GTSAM应用于告警收敛问题,利用因子图构建告警之间的关联关系,并通过GTSAM进行优化求解,从而实现告警的精准收敛。
数据挖掘
3
2024-05-15
ContourEdges 基于轮廓值在图像边缘绘制矩阵轮廓线的方法
该方法能够在给定的轮廓值上,无需插值,直接跟随图像边缘绘制矩阵的轮廓线。虽然与轮廓功能有所区别,但其语法相似,为用户提供了一种简便的轮廓绘制选择。
Matlab
0
2024-08-25
基于MATLAB的图像相位反对称计算方法
在MATLAB环境中,针对图像的相位反对称特性进行计算时,可以根据需要进行适当调整,以实现相位对称性的精确计算。
Matlab
2
2024-07-16
高斯曲率计算基于点云数据表面(x,y,z)的高斯曲率矩阵生成
输入为包含点(x,y,z)的矩阵数据。输出是每个点的高斯曲率,通过计算第一和第二基本形式来实现。为了获得k1和k2值,需使用首先提到的“平均曲率”文件。
Matlab
0
2024-08-12
基于图的图像分割:彩色图像支持
此程序为基于图的图像分割提供了更新版本,支持彩色图像。使用方法如下:
编译:GraphSeg_compile
读取图像:img = imread('图片/rice.jpg')
分割:[L, 轮廓] = graph_segment(img, 1, 3, 100)
显示结果:
原始图像:imshow(img), title('原始图像')
分割结果:imshow(label2rgb(L)), title('分段结果')
Matlab
6
2024-04-30
黑白图像中的轮廓跟踪
给定黑白图像和轮廓上特定点的行和列值,contour_trace 函数可以追踪并返回整个轮廓上的所有点。此函数假设前景为黑色,背景为白色。输入为黑白图像和轮廓上的单个像素的行和列值,输出为仅包含所需轮廓的二进制图像和轮廓上所有点的 (行,列) 值。
Matlab
3
2024-06-01
提升图像边缘检测的效率与精度基于MATLAB的图像轮廓提取技术
在图像分割过程中,有效追踪边界是关键步骤之一,能够实现对特定区域的精确提取。MATLAB提供了强大的工具,用于处理和分析图像,使得图像轮廓提取变得高效可靠。用户可以通过输入一幅图像,利用MATLAB的功能快速生成该图像的清晰轮廓。
Matlab
0
2024-08-25
告警收敛数据挖掘算法框架设计——基于因子图和GTSAM
2.1 告警收敛数据挖掘算法框架设计。告警数据属于典型的时态数据,时态数据挖掘技术构成了本章算法的理论基础。
数据挖掘
3
2024-07-13