本代码利用已训练的BP神经网络模型文件 (ANN.mat) 对新的数据集进行预测,计算预测值与真实值的均方误差,并绘制两者对比图以可视化预测结果。
基于预训练模型的BP神经网络数据预测
相关推荐
BP神经网络在Venice Lagoon数据预测中的应用问题
菜鸟初次接触BP网络预测问题-Venice Lagoon数据1993.txt,请帮助检查程序,预测结果不理想,请求各位大侠指点,非常感谢!要求利用前23个数据预测第24个数据,共有200组数据。输入数据为23200,输出数据为1200。尽管测试数据相同,但预测结果却出现显著错误,请帮忙查明问题所在。详细的样本数据附在文中。
Matlab
2
2024-07-28
Matlab基于BP神经网络的煤炭需求预测模型研究
Matlab技术基于双隐层BP神经网络,针对中国煤炭需求进行了模拟分析和预测,通过实际数据验证和分析,预测了未来五年的煤炭需求量。探讨了影响煤炭需求的复杂因素及其非线性关系,提出了一种基于神经网络的高精度预测方法,为煤炭资源管理提供了重要决策支持。
Matlab
2
2024-07-30
BP神经网络训练详解与实例解析
3. 神经网络的训练
3.1 训练BP网络
训练BP网络的过程是通过应用误差反传原理不断调整网络权值,使得网络模型输出值与已知的训练样本输出值之间的误差平方和达到最小或小于某一期望值。虽然理论上已证明:具有1个隐层(采用Sigmoid转换函数)的BP网络能够实现对任意函数的任意逼近,但迄今为止仍没有构造性结论说明如何在给定有限个训练样本的情况下,设计一个合理的BP网络模型,并通过学习达到满意的逼近效果。因此,建立合理的BP神经网络模型的过程,在国外被称为“艺术创造的过程”,是一个复杂而又十分烦琐的挑战。
算法与数据结构
0
2024-10-31
BP神经网络详解神经网络数学模型解析
神经网络是由许多神经元之间的连接组成,例如下图显示了具有中间层(隐层)的B-P网络。BP神经网络是一种数学模型,其详细解析如下。
算法与数据结构
2
2024-07-17
改进后的BP神经网络模型
主要借鉴了Matlab程序,对BP神经网络模型进行了改进和优化。
Matlab
0
2024-08-23
Matlab实现BP神经网络预测程序
BP神经网络是一种常用的神经网络算法,可解决各种复杂问题。在Matlab中,我们可以编写BP神经网络预测程序。以下是一个示例代码:首先,创建一个新的前向神经网络net_1:matlab net_1 = newff(minmax(P), [10, 1], {'tansig', 'purelin'}, 'traingdm');设置训练参数如下:matlab net_1.trainParam.show = 50; net_1.trainParam.lr = 0.05; net_1.trainParam.mc = 0.9; net_1.trainParam.epochs = 10000; net_1.trainParam.goal = 1e-3;使用TRAINGDM算法训练BP网络:matlab [net_1, tr] = train(net_1, P, T);完成训练后,使用训练好的BP网络进行仿真:matlab A = sim(net_1, P);计算仿真误差:matlab E = T - A; MSE = mse(E);学习算法是BP神经网络中的关键部分,常见的还有Hebb学习算法和SOM算法。
Sybase
4
2024-07-13
BP神经网络
BP神经网络的MATLAB代码实现展示了其基本的架构和训练过程。首先,定义网络结构,包括输入层、隐藏层和输出层的神经元数量。其次,初始化权重和偏置,然后通过前向传播计算输出,使用误差反向传播算法调整权重和偏置。最后,通过多次迭代训练网络,直到误差满足要求。该代码适用于简单的分类和回归任务,具有较好的学习能力和泛化性能。
算法与数据结构
2
2024-07-12
利用BP神经网络预测交通流量
该项目运用BP神经网络,分析交通流量数据,实现对未来交通流量的预测。
算法与数据结构
7
2024-05-19
基于PCA-BP神经网络的回采工作面瓦斯涌出量预测模型
为了准确预测回采工作面瓦斯涌出量,该研究结合主成分回归分析和BP神经网络原理,利用现场实测数据,通过多元统计分析软件SPSS分析影响瓦斯涌出量的因素之间的相关性,并提取主成分作为BP神经网络的输入参数,构建预测模型。研究结果显示,PCA-BP神经网络模型预测值与实际值的相对误差最大为2.820%,最小为2.036%,平均为2.357%,精度高于其他预测模型。该模型可为降低事故发生率和矿井延深水平提供有效的指导。
统计分析
3
2024-05-20