为了准确预测回采工作面瓦斯涌出量,该研究结合主成分回归分析和BP神经网络原理,利用现场实测数据,通过多元统计分析软件SPSS分析影响瓦斯涌出量的因素之间的相关性,并提取主成分作为BP神经网络的输入参数,构建预测模型。研究结果显示,PCA-BP神经网络模型预测值与实际值的相对误差最大为2.820%,最小为2.036%,平均为2.357%,精度高于其他预测模型。该模型可为降低事故发生率和矿井延深水平提供有效的指导。
基于PCA-BP神经网络的回采工作面瓦斯涌出量预测模型
相关推荐
基于随机森林的回采工作面瓦斯涌出预测
引入随机森林算法构建回采工作面瓦斯涌出预测模型,研究表明该模型预测效果较好。
数据挖掘
9
2024-05-01
平岗煤矿1202工作面割煤速度与瓦斯涌出量关系研究
平岗煤矿1202工作面瓦斯含量高,虽已采取瓦斯抽放措施,但在破煤生产过程中瓦斯涌出量依然较大。由于巷道面积和风速的限制,单纯依靠增加风量冲淡瓦斯的方法无法完全满足安全生产的需求。
通过对1202工作面割煤速度与瓦斯涌出量进行统计分析,研究发现两者之间呈现多项式关系,并推导出相应的计算公式。该研究结果可为新工作面割煤的安全高效生产提供理论依据。
统计分析
4
2024-05-15
神经网络技术预测煤矿综采工作面经济指标
基于神经网络的自学习方法,应用人工神经元网络系统理论,在西山煤电集团东曲矿综采工作面的实际资料统计分析基础上,预测工作面的日进度、日产量、回采工效率、坑木消耗、配件消耗等综合技术经济指标,预测结果精确度高,与实际相符。这一研究方法为煤矿综采工作面的计划、生产和管理提供了新的预测决策方法。
统计分析
0
2024-08-09
基于预训练模型的BP神经网络数据预测
本代码利用已训练的BP神经网络模型文件 (ANN.mat) 对新的数据集进行预测,计算预测值与真实值的均方误差,并绘制两者对比图以可视化预测结果。
Matlab
4
2024-05-25
Matlab基于BP神经网络的煤炭需求预测模型研究
Matlab技术基于双隐层BP神经网络,针对中国煤炭需求进行了模拟分析和预测,通过实际数据验证和分析,预测了未来五年的煤炭需求量。探讨了影响煤炭需求的复杂因素及其非线性关系,提出了一种基于神经网络的高精度预测方法,为煤炭资源管理提供了重要决策支持。
Matlab
2
2024-07-30
BP神经网络详解神经网络数学模型解析
神经网络是由许多神经元之间的连接组成,例如下图显示了具有中间层(隐层)的B-P网络。BP神经网络是一种数学模型,其详细解析如下。
算法与数据结构
2
2024-07-17
改进后的BP神经网络模型
主要借鉴了Matlab程序,对BP神经网络模型进行了改进和优化。
Matlab
0
2024-08-23
Matlab实现BP神经网络预测程序
BP神经网络是一种常用的神经网络算法,可解决各种复杂问题。在Matlab中,我们可以编写BP神经网络预测程序。以下是一个示例代码:首先,创建一个新的前向神经网络net_1:matlab net_1 = newff(minmax(P), [10, 1], {'tansig', 'purelin'}, 'traingdm');设置训练参数如下:matlab net_1.trainParam.show = 50; net_1.trainParam.lr = 0.05; net_1.trainParam.mc = 0.9; net_1.trainParam.epochs = 10000; net_1.trainParam.goal = 1e-3;使用TRAINGDM算法训练BP网络:matlab [net_1, tr] = train(net_1, P, T);完成训练后,使用训练好的BP网络进行仿真:matlab A = sim(net_1, P);计算仿真误差:matlab E = T - A; MSE = mse(E);学习算法是BP神经网络中的关键部分,常见的还有Hebb学习算法和SOM算法。
Sybase
4
2024-07-13
BP神经网络
BP神经网络的MATLAB代码实现展示了其基本的架构和训练过程。首先,定义网络结构,包括输入层、隐藏层和输出层的神经元数量。其次,初始化权重和偏置,然后通过前向传播计算输出,使用误差反向传播算法调整权重和偏置。最后,通过多次迭代训练网络,直到误差满足要求。该代码适用于简单的分类和回归任务,具有较好的学习能力和泛化性能。
算法与数据结构
2
2024-07-12