正交试验法,一种基于Galois理论的设计方法,用于研究多因素多水平实验。它通过从全面实验中挑选代表性水平组合进行实验,并分析结果以确定最佳组合,从而提高实验效率。
正交试验助手:高效探索多因素实验
相关推荐
详述单因素方差分析、多因素方差分析、正交实验设计及代码实现
单因素方差分析(One-Way ANOVA),是一种统计方法,用于评估一个因素的不同水平对连续型响应变量的显著影响。通常用于比较多个组别之间的平均值差异。在此方法中,假设各组观测值来自正态分布总体,且具有相同的方差。数学模型表达为 X_{ij} = mu_i + epsilon_{ij},其中 X_{ij} 是第 i 个水平下第 j 次观测结果,mu_i 是第 i 个水平下的总体均值,epsilon_{ij} 是随机误差项。进行假设检验时,需要计算组间平方和(SSA)、组内平方和(SSE)及总平方和(SST),构造F统计量来判断均值是否显著不同。
算法与数据结构
14
2024-09-14
EXCEL正交试验简易工具
选取数据表格,自动生成试验顺序。输入试验结果,一键计算,即可获得分析报告。
Access
16
2024-05-01
正交试验设计应用指南
正交试验设计提供了简化试验过程和分析试验结果的方法,适用于生产和科学研究领域。
统计分析
15
2024-05-15
正交试验设计PPT教程
正交试验设计的 PPT 教程,结构清晰、重点明确,适合新手上路也方便老手查漏补缺。试验目的、选因素、定水平这些环节全都讲得挺实在的。尤其是试验方案那块,讲怎么设计、怎么看结果,还顺带教你怎么挑正交表,基本一看就会。
页面的资源也不少,像拟水平法、交互作用、K 值偏差计算都有相关拓展,点进去直接能看。你要是经常搞多因素实验,这套教程和相关工具真挺省心。
另外,几个工具也值得一试,比如用EXCEL 做正交,简单粗暴,适合应急。还有一个正交试验助手,自动生成表格,响应也快。
建议你下载的时候注意一下资源年代,有的文件像是 2007 的老资料,方法没变但界面老点。你要想研究显著性检验,或者想总偏差平方
算法与数据结构
0
2025-06-26
MATLAB NxM方差分析多因素实验设计
N 个重复和 M 个非重复因子的 ANOVA 工具,适合多因素实验设计,代码写得挺扎实的,用 MATLAB 做统计的朋友可以试试看。是有交互效应的情况,用这套脚本能省不少事。
Matlab
0
2025-06-15
正交试验设计PPT教程-试验结果分析之拟水平法
拟水平法的极差分析与一般正交试验类似,但在计算拟水平因素K值和极差R时有区别。拟水平法的方差分析步骤与一般正交试验相同,但拟水平列的偏差平方和和自由度计算不同。
算法与数据结构
11
2024-04-30
显著性检验-正交试验设计PPT教程优化
随着技术的发展,正交试验设计在显著性检验中发挥关键作用。因素A显著,而因素C则未达到显著水平;而因素B对试验结果没有显著影响。因素的作用顺序为:A-C-B。根据表10-28的方差分析表,t变异来源t平方和t自由度t均方tF值t临界值Fat显著性tAt17.334 t3t5.778 t22.75tF0.05(3,3)=9.28, F0.01(3,3)=29.46t* tB△t0.00125 t1t0.00125 tCt0.781 t1t0.781 t3.07tF0.05(1,3)=10.13 F0.01(1,3)=34.12 t误差e t0.763 t2t0.381 t误差e △ t0.764
算法与数据结构
10
2024-07-15
总偏差平方和正交试验设计PPT教程
总偏差平方和是正交试验设计中的重要概念。列出了偏差平方和,并说明了试验的总次数n和每个因素水平数m。每个水平重复r次,其中r等于n/m。当因素水平数m等于2时,
算法与数据结构
9
2024-07-22
正交试验灰关联度分析法2007
灰关联法(GRA)是个挺有意思的工具,适合做正交试验的数据。简单来说,它能你找出每个因素对实验结果的关联度,进而优化实验条件。要是你不太懂交互作用的话,这个方法好用。通过 GRA,你可以快速识别出哪些因素在实验中最重要,优化起来就省时省力。其实,正交试验设计本身挺复杂,但有了 GRA 的辅助,起来就清晰多了。
统计分析
0
2025-06-15