利用遗传算法优化数据挖掘算法,提高信息挖掘效率。
基于遗传算法的数据挖掘规则生成系统评价
相关推荐
数据挖掘遗传算法的源码探索
数据挖掘是从海量数据中发现有价值知识的过程,结合了统计学、机器学习和数据库技术。在这份资源中,关注的是使用遗传算法解决数据挖掘问题。遗传算法源于生物进化理论,模拟物种进化过程,通过优化解决方案。在数据挖掘中,遗传算法可用于特征选择、分类、聚类和关联规则挖掘。它通过编码和优化特征集合,提升模型性能。分类和聚类任务中,结合各种分类器或确定最佳簇数量。关联规则挖掘则优化规则生成,发现商品购买行为间的关系。实现遗传算法的步骤包括种群初始化、适应度评价、选择、变异、交叉操作。资源中含有实现这些步骤的代码示例,以及如何应用于数据挖掘的指导。
数据挖掘
2
2024-07-31
基于混合遗传算法的数据挖掘技术(2012年)
随着数据库应用的不断深化,数据库规模急剧膨胀,人们需求对这些数据进行分析,找出有价值信息。但数据库管理系统本身未提供有效工具和方法来利用这些数据,因此数据挖掘成为当前研究热点。基于混合遗传算法,深入探讨了数据挖掘中的算法问题。
数据挖掘
0
2024-08-16
基于Matlab的遗传算法实现
提供了一个利用Matlab实现遗传算法的实例,展示了如何使用遗传算法解决优化问题。代码清晰易懂,包含了算法的关键步骤,例如种群初始化、适应度计算、选择、交叉和变异等,方便读者理解和学习遗传算法的实际应用。
Matlab
3
2024-05-31
基于MATLAB的遗传算法使用
遗传算法是一种模仿生物进化机制的随机全局搜索和优化方法,源自达尔文的进化论和孟德尔的遗传学说。它通过自动获取和积累搜索空间的知识,自适应地控制搜索过程,以求得最佳解。该算法高效、并行,适用于各种优化问题。
Matlab
3
2024-07-13
基于遗传算法挖掘最优频繁模式研究框架
数据爆炸式增长和自动化数据收集工具的普及降低了数据存储成本。然而,数据的高维度、异构性和复杂性给信息提取带来了挑战。数据挖掘技术应运而生,关联规则挖掘作为模式发现技术,可从海量数据中挖掘有价值的模式,但随着实时数据更新,相关性不断变化,需要高效地发现最优频繁模式。为解决传统关联规则挖掘的挑战,提出最优频繁模式系统(OFPS)。OFPS将数据预处理、频繁模式树构建和遗传算法相结合,有效发现最优频繁模式,并通过实验验证了其性能。
数据挖掘
9
2024-04-29
基于关联规则的数据挖掘算法
基于关联规则的数据挖掘算法在毕业设计中具有重要的参考价值,内容清晰且全面。
数据挖掘
5
2024-05-13
探究遗传算法在数据挖掘领域的应用
这本书深入探讨了遗传算法与数据挖掘之间的关系,并提供了大量经典案例,展现二者结合的独特价值。
数据挖掘
3
2024-05-12
研究论文-基于优化遗传算法的快速自动试卷生成算法研究.pdf
为了改进现有的试题管理系统在试卷生成环节中的速度和质量,结合粗粒度并行遗传算法与自适应技术,提出了一种自适应调整种群迁移的快速并行遗传算法。从试题库编码方案、遗传策略、适应度函数的优化、交叉变异算子的选择和自适应度值函数的选取等多个方面进行设计,取得了显著的适应度提升。采用并行策略显著提高了算法的运行速度。仿真实验显示,该算法成功应用于自动组卷,提高了组卷效率和成功率,具备广泛适用性。
数据挖掘
2
2024-07-26
基于遗传算法的复杂车间调度优化
针对多工序串行生产模式下的复杂车间调度问题,提出一种基于遗传算法的优化解决方案。该方案利用遗传算法强大的全局搜索能力,以最小化生产周期为目标,对工序排序和机器分配进行优化。
数据挖掘
3
2024-05-28