数据挖掘是从海量数据中发现有价值知识的过程,结合了统计学、机器学习和数据库技术。在这份资源中,关注的是使用遗传算法解决数据挖掘问题。遗传算法源于生物进化理论,模拟物种进化过程,通过优化解决方案。在数据挖掘中,遗传算法可用于特征选择、分类、聚类和关联规则挖掘。它通过编码和优化特征集合,提升模型性能。分类和聚类任务中,结合各种分类器或确定最佳簇数量。关联规则挖掘则优化规则生成,发现商品购买行为间的关系。实现遗传算法的步骤包括种群初始化、适应度评价、选择、变异、交叉操作。资源中含有实现这些步骤的代码示例,以及如何应用于数据挖掘的指导。