- 信息论数据挖掘:
-
决策树(ID3、C4.5)
-
集合论数据挖掘:
-
关联规则挖掘(Apriori算法、Fp-tree算法)
-
分类:
-
朴素贝叶斯、SVM、神经网络、KNN、AdaBoost
-
聚类:
- K-means
数据分析算法总结
相关推荐
大数据分析与应用技巧总结
第一节、环境设置1.Python是一种面向对象的解释性计算机编程语言2.语言特征:编译性语言、解释性语言(python平台兼容性)、动态语言、静态语言、强类型数据(只能进行类型安全转换的语言)、弱类型数据(一个变量可以分配不同数据类型的值) 3.python环境部署:网址www.python.org选择的最低版本不小于3.5配置完成python3环境后,配置IDE的工具,推荐vscode、pycharm第二节、基础知识学习目标:掌握变量、语句、缩进、注释掌握输入和输出语句掌握编程文件化及执行1.变量命名规则:标识符只能由字母、数字或下划线组成,第一个字符不能是数字,区分大小写
数据挖掘
9
2024-07-13
数据分析利器:常用算法揭秘
在数据洪流中,精准高效地分析数据至关重要。常用算法如同利刃,助你披荆斩棘,洞悉数据背后的奥秘。
分类算法: 准确识别数据类别,例如区分垃圾邮件和正常邮件。
聚类算法: 将相似数据归类,例如根据用户行为进行群体划分。
预测算法: 基于历史数据,预测未来趋势,例如预测商品销量。
关联规则分析: 揭示数据间的关联关系,例如发现经常一起购买的商品组合。
这些算法如同数据世界的魔法师,赋予数据以生命,让你从海量信息中提炼出价值,做出明智决策。
算法与数据结构
12
2024-05-19
数据分析常用距离算法解析
数据样本距离计算方法
在数据分析中,经常需要计算样本之间的距离,常用的距离算法包括:
1. 闵可夫斯基距离 (Minkowski Distance)
闵可夫斯基距离是一种通用的距离度量方法,可以用于计算数值型特征向量之间的距离。其公式如下:
$$d_{ij} = left(sum_{k=1}^n |x_{ik} - x_{jk}|^pright)^{1/p}$$
其中,$x_{ik}$ 和 $x_{jk}$ 分别表示第 $i$ 个和第 $j$ 个样本的第 $k$ 个特征值,$n$ 表示特征数量,$p$ 是一个可调参数。
2. 欧几里得距离 (Euclidean Distance)
欧几里得距离
算法与数据结构
17
2024-04-29
数据分析算法关联分析的转化方法
将事务处理过程转化为图形模型是数据分析算法中关联分析的重要步骤。
算法与数据结构
10
2024-08-15
预测型数据分析的其他算法
k近邻、决策树、随机森林是常用的回归和分类算法。
k近邻:根据数据的相似度对新数据进行预测。
决策树:使用一组规则将数据分类或预测数值。
随机森林:通过组合多个决策树来提高准确性。
数据挖掘
13
2024-05-13
频繁子图挖掘数据分析关联算法
频繁子图挖掘的算法,挺适合做大规模数据的时候用,是你想找出图结构里的高频模式。支持度阈值minsup的设定比较灵活,能帮你过滤掉没啥用的子图。哦对,这玩意儿主要用在无向连通图上,搜索空间大,跑起来计算量也不小,所以选算法和优化挺关键的。
搜索空间的指数级复杂度,挺考验性能优化功底的。想象一下,有d个实体的时候,候选项集数量是2^d,不优化简直噩梦。推荐你搭配看下基于加权不确定图数据的高效紧密子图挖掘算法,里面有些思路还不错。
代码实现上,用Java或Python都比较常见,像Java 实现无向图 PageRank 算法、Python 判断有向图与无向图连通性,都能借鉴一下。如果你追求效率,建议
算法与数据结构
0
2025-06-29
CDR数据分析
利用通信CDR数据库进行后台操作和数据分析,便于深入了解通信行为模式和优化网络性能。
Access
12
2024-05-15
某瓣读书数据分析Python数据分析案例
数据总是让人觉得有点复杂,不过像这个【某瓣读书数据】的案例还是蛮简单易懂的。它不仅展示了如何从多个维度对数据进行深度,还带了不少实际应用场景。你可以看到数据清洗、数据可视化等操作的细节,学习起来轻松。而且,通过这个案例,能看到实际开发中常遇到的数据问题,适合新手或者想要进阶的开发者。嗯,如果你正好有兴趣,也可以看看相关的其他案例,像是【某商超销售数据】和【气象数据 CSV 文件案例】这些都挺不错的哦。
统计分析
0
2025-06-24
数据分析算法的序列模式及其关联分析
购物篮数据经常包含顾客购买商品的时间信息,可以利用这些信息将顾客的购物行为整合成事务序列。然而,传统的关联模式概念仅关注商品的同时出现关系,忽视了数据中的时间序列信息。对于识别动态系统的重要特征或预测特定事件的发生,时间序列信息可能具有重要价值。
算法与数据结构
15
2024-09-14