随机聚类模型
当前话题为您枚举了最新的 随机聚类模型。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
matlab源代码-RCMSA鲁棒几何拟合随机聚类模型
该matlab开源源码实现了鲁棒几何拟合的随机聚类模型。该模型由TT Pham、T.-J. Chin、J. Yu 和 D. Suter 提出,通过随机聚类进行几何模型的稳健拟合。相关论文包括:
IEEE CVPR会议论文,普罗维登斯,罗德岛,美国,2012年,标题:Random Cluster Model for Geometric Fitting。
IEEE TPAMI期刊文章,2014年,标题:The Random Cluster Model for Robust Geometric Fitting。
其他相关文献:TT Pham, T.-J. Chin, K. Schindler, 和 D. Suter提出的交互几何先验和自适应可逆跳跃MCMC多结构拟合方法,发布于NIPS 2011。
此开源包为几何拟合领域的研究者提供了一个强大的工具,能够有效解决多模型拟合的鲁棒性问题。
Matlab
0
2024-11-05
聚类算法赋能选股模型
聚类方法已渗透到模式识别、数据分析、图像处理、市场研究等多个领域,并在量化投资和互联网金融中扮演着日益重要的角色。以股票市场为例,通过聚类分析,可以洞悉不同类别股票的升值潜力,而在投资产品领域,聚类分析则有助于评估各类产品的投资回报率。
作为数据挖掘的重要组成部分,聚类分析能够独立地揭示数据分布规律,观察每个簇的特征,并针对特定簇进行深入分析。此外,它还可以作为其他算法的预处理步骤,有效降低计算量,提升分析效率。
在量化投资中,聚类分析的主要应用在于对投资标的进行分类,从而确定最佳投资类别。
数据挖掘
2
2024-05-25
Matlab代码示例基于随机分箱的光谱聚类算法
Matlab交叉检验代码SpectralClustering_RandomBinning(SC_RB)提供了一种简单的方法,利用最新的随机分箱特征来扩展光谱聚类。该代码结合了内核逼近(Random Binning)和特征值/奇异值求解器(PRIMME),适用于处理大规模数据集。详细信息可以在Wu等人的论文中找到:“使用随机分箱特征的可伸缩光谱聚类”(KDD'18)以及IBM Research AI Blog中获取。为了运行此代码,用户需要安装RB、PRIMME和LibSVM工具包,并编译相应的MEX文件以适配Mac、Linux或Windows操作系统。此外,还需下载符合libsvm格式的数据集,将训练和测试数据集合并为一个文件。推荐搜索最佳的超参数sigma,以获得最佳性能。
Matlab
0
2024-09-14
分割聚类
聚类分析中的分割聚类技术
数据挖掘算法中的一种聚类方法
数据挖掘
2
2024-05-25
模糊聚类模型在推荐系统中的应用
模糊聚类是一种在数据分析中广泛应用的技术,特别是在推荐系统中发挥着重要作用。它通过处理复杂的用户偏好数据,能够有效提高推荐的精度和个性化程度。模糊聚类模型不仅仅局限于传统的数据分类,而是在大数据背景下,通过更加灵活和智能的算法,实现了对用户行为的更加精细化分析和挖掘。
算法与数据结构
2
2024-07-18
聚类算法对比
该研究深入探讨了数据挖掘中的聚类算法,全面比较了各种算法的优点和局限性。
数据挖掘
4
2024-05-01
选择聚类算法
探索聚类算法以有效提取 Web 数据洞察力。
数据挖掘
3
2024-05-25
基于Spark框架实现K-Means聚类与随机森林分类
Apache Spark在大数据分析领域因其高效和并行计算能力备受关注。本篇文章将深入讲解如何在Spark框架下实现K-means聚类和随机森林(Random Forest)分类算法。两种算法分别解决无监督学习和监督学习中的常见问题。K-means聚类通过将数据集分成K个不同的簇,使得每个数据点到所属簇中心的距离最小;而随机森林作为一种集成学习方法,通过构建多个决策树并取其平均结果来提高预测准确性。以下是两种算法的实现示例代码。
K-means聚类的Spark实现
K-means是一种无监督学习算法。我们在Spark Mllib中可以使用KMeans类来实现此算法。以下代码展示了如何在Spark中实现K-means聚类:
from pyspark.mllib.clustering import KMeans
from pyspark.mllib.linalg import Vectors
# 创建数据集
data = sc.parallelize([[1.0, 2.0], [2.0, 1.0], [4.0, 5.0], [5.0, 4.0]])
# 转换数据
features = data.map(lambda p: Vectors.dense(p))
# 训练模型
clusters = KMeans.train(features, 2, maxIterations=10, runs=10)
# 预测
predictions = clusters.predict(features)
随机森林分类的Spark实现
随机森林是一种有效的集成学习方法。我们在Spark Mllib中可以使用RandomForestClassifier或RandomForestClassificationModel类来实现随机森林分类。以下代码展示了在Spark框架下的Python实现:
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.feature import VectorAssembler
from pyspark.sql import SparkSession
# 假设DataFrame 'df'包含特征列
assembler = VectorAssembler(inputCols=[\"feature1\", \"feature2\"], outputCol=\"features\")
trainingData = assembler.transform(df)
# 实例化随机森林分类器
rf = RandomForestClassifier(labelCol=\"label\", featuresCol=\"features\", numTrees=10)
# 训练模型
model = rf.fit(trainingData)
# 预测
predictions = model.transform(trainingData)
总结:以上代码展示了如何在Spark中实现两种常用的机器学习算法,分别用于无监督和监督学习的场景,为大数据分析提供了强大的工具。
spark
0
2024-10-26
优化的高斯混合模型工具包(聚类、回归等)
这款优秀的Matlab编写的高斯混合模型工具包涵盖了聚类、回归等多种功能,详细介绍了每个函数的具体用途和操作方法。
Matlab
1
2024-07-27
基于网格的聚类
基于网格的聚类算法是一种能有效发现任意形状簇的无监督分类算法,克服了基于划分和层次聚类方法的局限性。网格方法将数据空间划分为网格,将落在同一网格中的数据点视为同一簇。常见的基于网格的聚类算法包括:- CLIQUE- WaveCluster
数据挖掘
4
2024-05-01