在MATLAB中使用拟合代码IF_toolbox,详细介绍了如何拟合具有峰值触发电流eta和移动阈值gamma的随机IF模型。文章揭示了三种皮质神经元类型的提取和分类过程,并比较了它们的不同适应机制。此外,作者Skander Mensi、Richard Naud等人在神经生理学杂志2011年的研究中使用了类似的方法,通过fit_IF()脚本演示了模型的实施过程。拟合过程验证该方法在参数估计上的性能。
MATLAB绘图随机IF模型拟合代码演示
相关推荐
matlab源代码-RCMSA鲁棒几何拟合随机聚类模型
该matlab开源源码实现了鲁棒几何拟合的随机聚类模型。该模型由TT Pham、T.-J. Chin、J. Yu 和 D. Suter 提出,通过随机聚类进行几何模型的稳健拟合。相关论文包括:
IEEE CVPR会议论文,普罗维登斯,罗德岛,美国,2012年,标题:Random Cluster Model for Geometric Fitting。
IEEE TPAMI期刊文章,2014年,标题:The Random Cluster Model for Robust Geometric Fitting。
其他相关文献:TT Pham, T.-J. Chin, K. Schindler, 和 D. Suter提出的交互几何先验和自适应可逆跳跃MCMC多结构拟合方法,发布于NIPS 2011。
此开源包为几何拟合领域的研究者提供了一个强大的工具,能够有效解决多模型拟合的鲁棒性问题。
Matlab
0
2024-11-05
Matlab代码对随机SIR网络的影响随机SIR网络模型
此存储库包含Matlab代码,用于描述无标度随机网络上的随机SIR动力学。该模型的详细描述可以在Matia Sensi合著的论文“网络属性和流行病参数如何影响无标度随机网络上的随机SIR动态”中找到。我们欢迎您提供反馈意见和建议。如果您发现错误或有任何问题,请通过以下邮箱联系我们:sara.sottile@unitn.it, ozan.kah@gmail.com, mattia.sensi@unitn.it。通过配置模型,您可以选择幂律分布的指数来生成无标度网络,并决定传播速度、感染节点的初始数量及其位置(如中心、平均程度、外围或随机)。运行程序的方法是键入:./configuration.py [FLAG] [P]。设置参数的方法是:N [节点数量] alpha [幂律指数] number_of_infected [起始时的感染数量] end_time [最大时间]
Matlab
2
2024-07-13
模型过拟合和欠拟合
模型拟合情况分为两种:
过拟合:模型在训练集上的表现过于理想,泛化能力较差。
拟合不足:模型在训练集上表现不佳,无法捕捉数据的规律。
理想模型应同时具有较低的训练误差和泛化误差。
算法与数据结构
4
2024-04-30
基于强化学习模型的选择数据拟合Matlab代码
该Matlab代码用于将强化学习模型拟合到选择数据。主要功能包括:
example.m:提供了一个简单的学习用例,展示了如何在标准增量规则强化学习模型中使用该代码。
rlfit.m:接受一个用于计算动作值的函数句柄、选择和结果历史记录以及模型参数约束,进行模型拟合并返回对数似然、动作值和拟合参数。
multmin.m:使用多个随机起点进行模型拟合,以找到最佳参数。
LL_softmax.m:处理softmax选择函数的对数似然计算,并包含一些渐近展开式,以避免在极端情况下出现NaN。
Q_model.m:实现了一个具有单个参数(学习率)的标准增量规则强化学习模型。
用户需要提供一个函数,该函数根据一组参数、选择历史记录和结果历史记录来计算每个选择的动作值。该代码支持多种结果类型,并使用softmax函数进行选择。
Matlab
3
2024-05-29
随机多边形绘图工具
bubblebath 函数
此函数用于生成随机分布的圆形或其他多边形图形。用户可以灵活设置图形参数,例如:
画布尺寸
多边形半径范围
多边形边数(控制形状)
图形密度
多边形间距或重叠程度
边缘处理方式等
函数会输出图形,并提供四个变量,方便用户进行后续操作或复现图形。
bubblebath_examples.mlx 文件
此文件包含多个示例,演示如何调整参数并利用输出变量进行扩展操作,例如为图形着色、计算每个多边形的面积等。
函数参数详情
请参考帮助文档获取每个参数的默认值及详细说明。
更新动态
请关注此页面获取最新更新。
Matlab
5
2024-04-29
分段线性拟合Matlab代码
ME3255 计算力学 (2017 年春季)
课程简介:
本课程教授学生使用 Matlab/Octave 进行科学编程。内容涵盖数值方法、最佳编程实践和版本控制,并将这些方法应用于解决各种物理问题。
学习目标:
学生将能够创建线性和非线性问题的数值近似。
学生将理解由浮点运算和数值方法产生的近似值。
学生将学会使用数值微分和积分方法求解微分方程。
学生将学习 Git 版本控制、Matlab/Octave 函数和编程最佳实践。
课程安排:
时间:上午 9:30-10:45
地点:Francis L. Castleman bdg (CAST) 会议室 212
授课教师:
Ryan C. Cooper 教授
办公时间:Engineering II 315 室,周一 2:30-4:30pm,周四 11am-1pm
助教:
张培玉(研究生)
办公时间:周五 9:00-11:00am,Engineering II 会议室 315
课程信息:
先修课程:CE 3110,MATH 2410Q
教材:Chapra, Steven,《面向工程师和科学家的 MATLAB 应用数值方法》
Matlab
4
2024-05-25
演示MATLAB中的插值与拟合命令
这是一个非常经典的MATLAB演示,特别适合那些希望学习计算方法的人。如果你不相信,不妨试一试。
Matlab
0
2024-08-23
matlab随机森林代码实现
经过验证的matlab随机森林代码,确保有效性。今年的内部文档详细解释了其操作步骤及应用场景。
Matlab
0
2024-09-19
MATLAB代码优化高效成本共同模型拟合与稳健的几何分割
在处理受噪声和异常值干扰的数据点时,识别底层模型常导致复杂的多模型拟合问题。提出了一种基于稳健几何模型拟合的快速分割方法,通过将数据点的高阶亲和力投影到图形中,并使用谱聚类进行聚类。为了减少计算成本,引入了一种有效的采样策略,以获取全图的高精度近似。实验结果显示,这种方法在精确性和计算效率上都优于传统的多结构模型拟合技术。
Matlab
0
2024-08-31