计算项目

当前话题为您枚举了最新的计算项目。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

TagRelator:基于Java的词语语义相似度计算项目
TagRelator项目源于大学编程课题,其方法基于特定论文研究成果。项目核心目标是计算词对的语义相似度得分,例如“猫-老虎”得分较高,表明概念相似,而“猫-石头”得分较低。 项目利用大量文本数据进行统计分析,自动计算得分。其假设是语义相似的词拥有相似的上下文,即文本中出现的后续词语。因此,项目需要大量文本数据以查找目标词及其上下文。 项目采用两种度量方法计算词对相似度得分:逐点互信息(PMI)和二阶共生PMI(SOC-PMI)。项目基于论文方法进行开发,并应用于Flickr照片标签领域,包括数据收集和存储的实现。 项目以Java语言开发,整体使用,部分类可独立使用。
Oracle在高级计算机科学项目中的角色
高级计算机科学项目面向大学的计算机科学、计算机工程及信息管理专业,提供甲骨文数据库、中间件软件、开发工具软件及相关课程。这些资源支持学生在软件开发、数据库管理、系统设计、业务分析和应用实施等技术职位的培训和应用。
MATLAB代码对计算机视觉项目3的影响
MATLAB代码影响了一个典型的单词分类管道示例。该项目介绍图像识别,从简单的方法开始(微小图像和最近邻分类),探索场景识别任务,并研究包括量化局部特征和线性支持向量机学习分类器在内的先进技术。单词袋模型借鉴自自然语言处理,通过视觉单词频率直方图进行分类,忽略图像中的空间信息。视觉单词“词汇”通过聚合大量本地特征集创建。详细信息可参见Szeliski第14.4.1章和14.3.2节。实现基本的单词袋模型,通过在15个场景数据库上进行训练和测试,有机会获得额外的信誉。
深入探索实时数据处理: Storm流计算项目实战
项目概述 本项目深入探究Storm流计算框架及其生态系统,涵盖以下关键技术: Storm: 实时数据处理的核心框架,提供分布式、高容错的流式计算能力。 Trident: Storm之上的高级抽象,简化复杂流处理拓扑的构建。 Kafka: 高吞吐量的分布式消息队列,用于可靠地传输实时数据流。 HBase: 可扩展的分布式数据库,提供实时数据的存储和检索。 CDH: Cloudera Hadoop发行版,提供Hadoop生态系统组件的集成和管理。 Highcharts: 用于创建交互式数据可视化图表,展示实时数据分析结果。 项目亮点 通过实际案例学习Storm流计算项目的设计和实现。 掌握Trident API,简化复杂流处理任务的开发。 了解Kafka、HBase等大数据技术在实时数据处理中的应用。 利用Highcharts实现实时数据的可视化分析。 目标受众 对大数据和实时数据处理感兴趣的技术人员。 希望学习Storm流计算框架的开发者。 寻求构建实时数据处理解决方案的数据工程师和架构师。
MATLAB科学计算项目欧拉方法代码应用于计算流体动力学
这个存储库包含2019年夏季慕尼黑工业大学(TUM)科学计算-计算流体动力学课程的最终项目,涵盖了对域几何形状的分析和应用Navier-Stokes方程的时间步长方法。项目考虑了使用固定时间步明确的欧拉Heun方法、龙格库塔4阶、自适应时间步Bogacki–Shampine(Runge-Kutta 3/4)和龙格-库塔-菲尔伯格(龙格-库塔4/5)等数值积分方法。存储库包含格式化的makefile、参数文件和几何文件,可通过指定问题名称运行模拟。
em算法matlab代码-学术项目统计计算、深度学习与数值分析
em算法matlab代码研究预处理方法及其浮点运算特性(舍入误差传播)。报告中包括案例研究报告,MatLab测试脚本script_matlab.m。2016年Hosseinkhan BoucherRémy提供的隐马尔可夫模型:Baum-Welch算法(EM)的Map-Reduce实现,用于分布式计算(PySpark)。报告详细解释了前向后向算法用于过渡矩阵和发射矩阵估计的两种实现方式:一种使用python内置程序包,另一种优化使用NumPy libraby。详细说明请参见hmm_report.pdf。
掌控项目边界:项目范围管理核心
项目边界与管理之道 项目范围定义了项目的边界,明确了需要完成的工作以及要交付的产品或服务。有效的范围管理对项目成功至关重要,它确保项目团队专注于既定目标,避免范围蔓延,从而控制成本、进度和质量。 范围变更控制 项目进行中,范围变更不可避免。关键在于有效控制变更,将负面影响降至最低。 1. 变更请求流程: 建立规范的变更请求流程,包括提交、评估、审批、实施和跟踪等环节。 2. 变更影响评估: 评估变更对项目成本、进度、质量、资源等方面的影响,为决策提供依据。 3. 变更控制委员会: 成立由关键干系人组成的委员会,负责审查和批准变更请求。 4. 范围基线管理: 明确项目范围基线,并与变更请求进行对比,确保变更在可控范围内。 5. 沟通与协作: 及时与干系人沟通变更情况,确保项目目标的一致性。 通过有效的范围管理,项目团队能够更好地掌控项目边界,确保项目按计划完成,实现预期目标。
MATLAB的欧拉方法代码-计算流体动力学项目库
此资源库包含与计算流体动力学相关的项目和课程资料。它包括两套使用C++和MATLAB编写的文件,用于完成Imperial Aeronautics模块AERO96014。第一套任务(占总成绩90%)实施托马斯算法和最速下降迭代法解决亥姆霍兹方程。第二套任务(占总成绩100%)涉及开发计算机代码,并使用Steger and Warming(1981)磁通矢量分裂方法评估一维Euler方程解。
MVA-高级计算机视觉课程-立体抠像项目的Matlab代码实现
通过图像变形处理抠像问题的立体方法。该项目由ENS Cachan的“计算机视觉高级方法”课程指导教授Nikos Paragios完成。项目重新实现并测试Michael Bleyer,Margrit Gelautz,Carsten Rother和Christoph Rhemann在其著作中介绍的算法。项目包括采集立体图像、校正和计算初始视差图等步骤。运行此项目需要Python 2.7及其opencv软件包的Python绑定。详细信息请参阅Report.tm文件。
数据挖掘项目cs6220项目
将训练文件“AP_train.txt”和测试文件“AP_test_par.txt”添加到数据目录。 运行命令“./MineDataSet.sh”。