网络情报

当前话题为您枚举了最新的 网络情报。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

企业财务竞争情报的网络数据挖掘技术应用
企业竞争和发展中,财务竞争情报至关重要,企业应重视竞争对手财务情报的收集与利用。在信息技术广泛应用的今天,企业可通过网络、数据库和数据挖掘技术获取财务情报,建立自己的竞争情报体系。这些技术不仅帮助企业积极获取和分析竞争对手的财务数据,还为战略决策提供了宝贵信息,助力企业在竞争中占据主动地位和获得竞争优势。
开源情报方法与工具
《开源情报方法与工具》专注于深入理解如何利用开源情报(OSINT)技术、方法和工具,从公开可获取的在线来源获取信息,支持情报分析。这些获取的数据可以用于不同的场景,如金融、犯罪和恐怖主义调查,以及更常规的任务,如分析商业竞争对手、进行背景调查和获取个人及其他实体的情报。本书还将提升您从表层网、深层网和暗网在线获取信息的技能。许多估计显示,情报服务获取的有用信息中,90%来自公开来源(即OSINT来源)。社交媒体网站因其集中了大量有用信息而成为调查的良好资源。例如,您可以从一个地方获取大量个人信息。
角色情报专家,创意社群互动活动
参与者可以通过制作个性化身份卡成为“神秘人”,或者作为“解密人”根据线索揭示神秘人身份。成功解密后,“解密人”将获得神秘人的联系方式。
大数据环境下情报学的新挑战与机遇
随着技术进步,大数据在情报学领域的应用正在改变传统方法。面对复杂的数据网络和多样化的分析方法,情报学面临着精准化需求和结果呈现的挑战。探讨了大数据在知识领域中的发展现状,分析了情报学在大数据环境下的机遇与挑战,提出了情报学变革的新框架,包括信息资源构成、组织方式、分析方法和服务功能的拓展。
国际情报学领域核心期刊与研究热点的视觉分析
文章利用可视化工具对检索的数据进行分析,展示了国际情报学领域的核心期刊分布情况。同时,通过词频统计揭示了情报学领域的研究热点,为选择研究重点提供了详细参考。
RBF 神经网络网络结构
输入层:感知单元连接网络和环境隐含层:非线性变换,输入空间到隐层空间输出层:线性,响应训练数据
MATLAB神经网络工具箱中Hopfield网络的反馈网络模型
Hopfield网络(反馈网络)的仿真:simuhop设计solvehop设计Hopfield网络solvelin设计线性网络rands产生对称随机数learnbp反向传播学习规则learnh Hebb学习规则learnp感知层学习规则learnwh Widrow-Hoff学习规则initlin线性层初始化initp感知层初始化initsm自组织映射初始化plotsm绘制自组织映射图trainbp利用反向传播训练前向网络trainp利用感知规则训练感知层trainwh利用Widrow-Hoff规则训练线性层trainsm利用Kohonen规则训练自组织映射
网络数据挖掘
Bing Liu 著
网络学习资源
网络学习资源 中央广播电视大学: http://www.open.edu.cn 北京广播电视大学: http://www.btvu.org 北京广播电视大学在线学习平台: school.btvu.org 使用说明: 访问以上网站, 使用实名或学号注册登录后,即可进行学习、查询资料、参与在线讨论等操作。
网络锁配置
这是一个关于有驱网络锁的配置文件,采用7z格式压缩。