概率工具
当前话题为您枚举了最新的 概率工具。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
OptiPt:概率选择模型工具箱
OptiPt 可用于拟合和测试多属性概率选择模型,支持 Bradley-Terry-Luce (BTL) 模型、按方面消除 (EBA) 模型和偏好树 (Pretree) 模型。OptiPt 主要功能包括:
简洁的模型设定方式
高精度参数估计
拟合优度检验
参数估计的协方差矩阵
参考文献
Wickelmaier, F. & Schmid, C. (2004). 一个 MATLAB 函数,用于从配对比较数据中估计选择模型参数。行为研究方法,仪器和计算机,36(1),29-40。 https://doi.org/10.3758/BF03195547
http://www.mathpsy.uni-tuebingen.de/~wickelmaier/optipt.html
Matlab
6
2024-04-29
探究概率图模型:FULLBNT工具箱
FULLBNT-1.0.4工具箱为MATLAB提供了丰富的功能,用于构建和分析贝叶斯网络。它支持精确推理和近似推理算法,可以进行参数学习和结构学习。研究者和开发者可以使用FULLBNT探索复杂的概率关系,并应用于各种领域,例如医疗诊断、风险评估和决策支持系统。
算法与数据结构
5
2024-04-29
wordhit Matlab开发单词生成概率工具
考虑以下问题:在一系列抛硬币中,HH还是TH更有可能首先出现?一只猴子平均需要多长时间才能打出“to be or not to be”这个短语?WORDHIT解决了任何大小合理的单词列表的一般问题。例如,wordhit('HH','TH') 返回[1/4,3/4],[P,T]=wordhit('HH','TH'),T = [0.5,2.5],T./P 条件命中次数[2,10/3],sum(T) 总击球时间[3],可选符号概率值(需要符号工具箱)。[~,t]=wordhit(repmat('H',1,5),'',sym('p')) (1+p+p^2+p^3+p^4)/p^5。该算法通过确定马尔可夫链的转移矩阵来工作,其中每个状态表示与每个单词的前几个元素匹配的给定组合,吸收状态是匹配完整单词的位置,允许将命中概率和命中时间进行计算。
Matlab
0
2024-08-17
多种概率分布及其应用
均匀分布:随机变量取值在指定区间内均匀分布,用 U(a, b) 表示。
正态分布:随机变量取值呈钟形曲线分布,用 N(μ, σ²) 表示。
指数分布:随机变量取值呈非对称分布,无记忆性,用 Exp(λ) 表示。
Gamma 分布:随机变量取值呈非对称分布,用于表示服务时间和零件寿命,用 G(α, β) 表示。
Weibull 分布:随机变量取值呈非对称分布,用于表示设备寿命,用 W(α, β) 表示。
Beta 分布:随机变量取值在 (0, 1) 区间内,用于表示概率和比例。
算法与数据结构
2
2024-04-30
Matlab概率统计实验应用
能够使用Matlab计算概率、均值和方差; 2. 能够执行常见分布的数值计算; 3. 能够利用Matlab进行期望和方差的区间估计; 4. 能够使用Matlab进行回归分析。
Matlab
0
2024-09-30
R语言计算t分布概率
已知X服从自由度为30的t分布,用R语言计算:1) P(X>1.96)2) P(X≤a)=0.01并与标准正态分布的计算结果进行比较。
统计分析
7
2024-04-30
概率分析软件-支持多次输入
在信息技术领域中,概率分析软件是数据分析和机器学习的关键组成部分,尤其在处理大规模随机数据时。这款名为\"概率分析软件-支持多次输入\"的程序专为计算事件发生频率而设计,用户可以指定多次数据采集的轮次或批次,极大地便利了模拟实验和分析独立重复试验的结果。该软件基于Java语言开发,充分利用了Java的标准库,例如Collections和Stream,以实现高效的数据处理。
算法与数据结构
3
2024-07-27
概率损失系统-AnsysWorkbench工程实例解析
此例中,单服务队伍的∞/3// MM系统优于多服务队伍的3个∞/1// MM系统,体现了减少队伍数量的优化理念。
算法与数据结构
4
2024-04-30
概率分布在滤波中的应用
几何分布中样本X(n)和X(1)的概率分布:
P{X(n) ≤ k} = 1 - P{X(n) > k} = 1 - pqk
P{X(1) ≤ k} = 1 - P{X(1) > k} = 1 - (1 - p)k
正态分布样本的概率计算:
P{X̄(16) > 10} = 1 - Φ[(10 - 8) / √(4/16)] = 1 - Φ(1) = 0.9370
P{X̄(1) > 5} = Φ[(5 - 8) / √(4/1)] - Φ[(5 - 8) / √(4/16)] = 0.0933 - 0.0309 = 0.0624
韦布尔分布密度函数:f(x) = (β / α)(x / α)^(β-1)exp[-(x / α)^β]
算法与数据结构
4
2024-05-01
MATLAB 在概率统计中的应用
应用 MATLAB 进行概率统计的实用指南
探讨 MATLAB 在概率统计中的应用基础
Matlab
4
2024-05-15