自适应处理

当前话题为您枚举了最新的 自适应处理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

自适应波束形成代码
提供自适应波束形成的 MATLAB 代码,包括注释,保证运行成功。
自适应GSK算法揭秘
了解自适应GSK算法(AGSK)前,先探索其基础——GSK算法。GSK算法灵感源于知识获取与分享的过程。 初级阶段:从小型网络(家人、邻居)获取知识,虽想法不成熟,但积极分享。 高级阶段:从大型网络(工作、社交)获取知识,相信成功者观点,积极分享以助人。
自适应滤波技术应用
这篇资源提供了MATLAB代码,适用于处理非平稳信号的自适应滤波技术。
阵列信号处理技术与自适应波束形成优化方案
这份资源涵盖了多种天线阵列信号处理经典算法,如MUSIC、ESPRIT等;同时包括自适应波束形成技术,如LMS、LCMV等。
其他类型的自适应控制-MATLAB图像处理函数汇总
三、其他类型的自适应控制 自校正控制和模型参考自适应控制是自适应控制的基本模式。还有其他形式的自适应控制,主要有变结构自适应控制、混合自适应控制、对象具有未建模动态的自适应控制、非线性控制对象的自适应控制和模糊自适应控制等。本书主要讲述上面提到的各类自适应控制的基本原理和设计方法。 §1.3 自适应控制的发展概况 在50年代末,由于飞行控制的需要,美国麻省理工学院(MIT)怀特克教授(Whitaker)首先提出飞机自动驾驶仪的模型参考自适应控制方案,称为MIT方案。在该方案中采用局部参数优化理论设计自适应控制规律,这一方案没有得到实际应用。用局部参数优化方法设计模型参考自适应系统,还需检验其稳定性,这就限制了这一方法的应用。 在1966年,德国学者帕克斯(P.C.Parks)提出采用李雅普诺夫(A.M.Liapunov)第二法来推导自适应算法,以保证自适应系统全局渐近稳定。在用被控对象的输入输出构成自适应规律时,在自适应规律中包含输入和输出的各阶导数,这就降低了自适应对干扰的抑制能力。 为了避免这一缺点,印度学者纳朗特兰(K.S.Narendra)和其他学者提出各自的不同方案。罗马尼亚学者波波夫(V.M.Popov)在1963年提出超稳定性理论,法国学者兰道(I.D.Landau)把超稳定性理论应用到模型参考自适应控制中来。用超稳定性理论设计的模型参考自适应系统是全局渐近稳定的。 自校正调节器是在1973年由瑞典学者阿斯特罗姆(K.J.Aström)和威特马克(B.Wittenmark)首先提出来的。1975年克拉开(D.W.Clark)等提出自校正控制器。1979年威尔斯特德(P.E.Wellstead)和阿斯特罗姆提出极点配置自校正调节器和伺服系统的设计方案。 自适应控制经过30多年的发展,无论在理论上或在应用上都取得了很大的进展。近10多年来,由于计算机的迅速发展,特别是微处理机的广泛普及,为自适应控制的实际应用创造了有利条件。自适应控制在飞行控制、卫星跟踪望远镜的控制、大型油轮的控制、电力拖动、造纸和水泥配料等方面的控制中得到应用。利用自适应控制能够解决一些常规的反馈控制所不能解决的复杂控制问题,能大幅度地提高系统的稳态精度和跟踪精度。 参考文献 Landau, I.D. Adaptive Control
自适应进化策略(MATLAB 版)
基于进化策略,提供了一种自适应版本,优化非线性函数。了解详情,请访问:http://www.scholarpedia.org/article/Evolution_strategies 。
matlab自适应滤波代码实现
这篇文章介绍了在matlab中实现自适应滤波器的算法,涵盖了牛顿法和最陡下降法的具体方法,对自适应滤波的学习具有实质性帮助。
雷达STAP优化处理的完全自适应演示 - Matlab开发
这篇文章详细介绍了完全自适应STAP的实现方法,特别适合初学者。
自适应滤波第四版,MATLAB代码——非线性自适应滤波器
经典beamforming和自适应滤波的MATLAB源代码。由Paulo S.R. Diniz编著的《自适应滤波第四版(Adaptive Filtering_Algorithms and Practical Implementation 4th)》中的Nonlinear_Adaptive_Filters部分源代码。
牛顿平台自适应学习机制
基于大数据的自适应学习系统,如牛顿平台,通过分析学习过程行为数据,预测学习者特征,提供个性化学习服务。牛顿平台的核心技术包括知识追溯算法、贝叶斯学生建模和自适应学习引擎。它提供的自适应服务涵盖知识点推荐、学习路径规划和学习干预策略。