基于粒子传播
当前话题为您枚举了最新的 基于粒子传播。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于粒子传播的LDPC解码中AWGN和BSC模型的信道噪声估计
在AWGN和BSC模型中,使用基于粒子的信念传播进行LDPC解码的信道噪声估计。本代码基于已发表的期刊论文,并进行了进一步改进,删除了参数\lambda以减少自由参数数量。虽然未经优化,PBP估算器仍可能在速度上存在一些限制。若要使用本代码,请引用我们在IEEE TCOM上发表的相关论文。详细引用包括以下论文:L. Cui、S. Wang、S. Cheng、M. Yeary,“使用基于粒子的信念传播的自适应二进制Slepian-Wolf解码”,通信,IEEE交易,59 (9),2337-2342,2011年9月;S. Wang、L. Cui、S. Cheng、Y. Zhai、M. Yeary、Q. Wu,“使用粒子滤波的噪声自适应LDPC解码”,通信,IEEE交易。
Matlab
0
2024-10-01
基于复杂网络的SIR传播模型(Matlab)
这个Matlab代码基于小世界网络实现,是经典的SIR传播模型。模型中,个体状态经历S(易感)、I(感染)、R(康复)三种阶段。康复者具有免疫力,不再感染。尽管代码实现基本功能,其简洁性有待提高,适合学习SIR传播模型的代码设计思路。
算法与数据结构
1
2024-07-18
基于粒子滤波的目标追踪算法
这是一份基于Matlab编写的源程序,实现了粒子滤波算法的详细流程和基本算法原理。
Matlab
2
2024-07-26
基于Matlab的粒子滤波算法应用
Matlab实现的粒子滤波算法源代码,经验证可用于目标跟踪、图像处理等多个领域的应用。该算法结合了粒子群优化和概率分布模型,具有高效性和精确度。
Matlab
1
2024-07-30
基于元组ID传播的多关系频繁模式挖掘
传统的多关系数据挖掘算法通常依赖于物理连接操作, 这在处理大规模数据集时会导致效率低下。为了克服这一限制, 本研究提出了一种新的多关系频繁模式挖掘算法。
该算法的核心思想是利用元组ID传播机制, 在不进行物理连接的情况下, 直接从多个关系中挖掘频繁模式。通过这种方式, 算法可以显著减少计算量和内存消耗, 从而提高挖掘效率。
实验结果表明, 相比于传统的基于连接的方法, 本算法在处理多关系数据时具有更高的效率和可扩展性。
数据挖掘
2
2024-05-25
基于信任度的社交网络消息传播模型分析
社交网络作为新兴媒体具有广泛社会影响力,其营销方式日益发展。本研究基于日常生活中的信任原理,提出了一种基于信任度的消息传播模型。该模型首先通过数据挖掘算法对个体进行分类,然后计算个体间的信任度,并结合消息与个体属性相似性进行传播范围预测。实验结果显示,该模型相较于基准方法,在准确度上提升了约15%。
数据挖掘
3
2024-07-13
自由空间传播路径损耗模型LOS波传播特例
在自由空间中,最简单的波传播情况是直接视距(LOS)传播,没有地球表面或其他障碍物引起的阻碍。
Matlab
3
2024-07-20
基于CUDA的并行粒子群优化算法
基于CUDA的并行粒子群优化算法
该项目运用CUDA编程模型,将粒子群优化算法的核心计算环节迁移至GPU平台,实现了显著的性能提升。CPU主要负责逻辑控制,而GPU则承担了并行计算的重任,实现了比传统串行方法快10倍以上的加速效果,并且保持了高精度。
优势
加速计算: 利用GPU的并行计算能力,大幅提升算法执行效率。
高精度: 算法在加速的同时,依然保持了结果的精确性。
CPU/GPU协同: CPU负责逻辑控制,GPU专注于并行计算,实现高效分工。
应用领域
该算法可应用于各类优化问题,例如:
函数优化
工程设计
机器学习模型参数调优
路径规划
算法与数据结构
6
2024-04-29
基于Matlab的粒子群优化算法实现
这是一个关于粒子群优化算法的基础Matlab源代码,附带详细注释,方便学生学习和理解。希望这能对你们有所帮助!
Matlab
0
2024-09-27
基于Matlab的水波传播卡尔曼滤波器代码示例
该Matlab代码展示了在不同网格上使用一维线性浅水波浪模型的集成卡尔曼滤波器。通过分部求和(SBP)方法解决波的传播问题,并与最优插值方法进行了比较。用户可以从中获取该代码,并了解如何在不同分支上运行不同功能。
Matlab
0
2024-09-29