社交网络作为新兴媒体具有广泛社会影响力,其营销方式日益发展。本研究基于日常生活中的信任原理,提出了一种基于信任度的消息传播模型。该模型首先通过数据挖掘算法对个体进行分类,然后计算个体间的信任度,并结合消息与个体属性相似性进行传播范围预测。实验结果显示,该模型相较于基准方法,在准确度上提升了约15%。
基于信任度的社交网络消息传播模型分析
相关推荐
基于复杂网络的SIR传播模型(Matlab)
这个Matlab代码基于小世界网络实现,是经典的SIR传播模型。模型中,个体状态经历S(易感)、I(感染)、R(康复)三种阶段。康复者具有免疫力,不再感染。尽管代码实现基本功能,其简洁性有待提高,适合学习SIR传播模型的代码设计思路。
算法与数据结构
1
2024-07-18
社交网络影响力传播研究综述
社交网络影响力传播研究汇集了随机模型、数据挖掘、算法优化和博弈论等技术,主要涵盖影响力传播模型、学习和优化。通过总结计算机科学领域近年的成果,展现了该研究的综合应用。当前面临的挑战和未来研究方向也需要进一步探讨。
数据挖掘
2
2024-05-26
基于复杂网络的学生社交网络模型研究(2008年)
利用实证数据分析QQ网络,研究了基于Internet的学生社交网络模型。通过比较网络度分布和特征参数,发现QQ网络与传统BA模型存在显著差异。提出了一种新的网络演化模型,并通过统计分析验证其与QQ网络参数的高度一致性,为学生社交网络研究提供了新的理论支持。
统计分析
0
2024-08-18
Matlab信任模型代码基于POMCP的多轮信任游戏实现
件概述了运行基于POMCP的多轮信任游戏的步骤,具体为IPOMCP的实现。通过不同的罪恶参数、计划深度和心智水平,对信任模型的主题进行分类。操作步骤如下:
先决条件:1. Boost C++库需要安装在最新版本(>1.33)中。2. 使用MSVC++编译器,并构建64位SDK7.1版本。3. 代码需与Matlab配合使用,用于数据准备与结果评估。
步骤:1. 首先构建并运行“信任预计算”项目。- 该项目将生成一个约2.3GB的大文件,包含预计算的0级投资者操作值。- 该文件需要包含在其他项目的构建目录中。2. 接着,转到“信任生成”项目:- 2.1 运行GenerateValidationInput文件,生成约10个主题参数样本,输入消息会显示有效的参数范围。- 2.2 从C++文件中构建Trust Generative项目,并确保包含预计算的0级投资者值。- 2.3 运行生成的项目,并使用GenerateValidationInput生成的.bin文件进行后续处理。
Matlab
0
2024-11-06
推荐系统的信任网络
本书专精于推荐系统中的信任网络算法,这类算法在推荐系统领域中属于较为冷门的方向。
算法与数据结构
2
2024-05-25
移动通信网络中常用的传播模型
移动通信网络中常用的传播模型
传播模型是基于大量测量数据统计分析得出的无线信号传播经验公式。
奥村模型(Okumura Model)* 完全基于测量数据, 仅提供粗略的指导。
HATA 模型* 适用频率范围: 100-1500 MHz* 适用距离: 1-20 km* 存在环境修正值, 但未考虑地形影响。* 修正后的 HATA 模型适用频率范围: 100-3000 MHz
COST-231 模型* 基于奥村模型, 针对高频段传播特性进行了分析。* 适用频率范围: 1500-2000 MHz
LEE 模型* 适用于市区或郊区传播场景
射线跟踪模型* 适用于微蜂窝传播场景
统计分析
5
2024-05-15
社交网络数据挖掘与分析
社交网络数据挖掘与分析是指运用数据挖掘技术从社交网络数据中提取有价值信息的过程。社交网络平台积累了海量用户数据,包括用户个人信息、社交关系、兴趣爱好、行为轨迹等。通过数据挖掘技术,可以发现用户行为模式、社交网络结构特征、信息传播规律等,为用户画像、精准营销、舆情监测等应用提供数据支持。
社交网络数据挖掘与分析主要涉及以下几个方面:
数据收集: 从社交网络平台获取原始数据,例如用户帖子、评论、点赞、转发等。
数据预处理: 对原始数据进行清洗、转换、整合,使其符合数据挖掘算法的要求。
特征提取: 从预处理后的数据中提取有价值的特征,例如用户活跃度、影响力、情感倾向等。
数据分析: 运用数据挖掘算法对特征数据进行分析,例如聚类分析、分类分析、关联规则挖掘等。
结果可视化: 将数据分析结果以图表等形式展示出来,方便用户理解。
社交网络数据挖掘与分析面临着数据规模庞大、数据异构性强、数据实时性要求高等挑战,需要不断发展新的数据挖掘技术和方法。
数据挖掘
2
2024-05-31
基于Hadoop的并行社交网络挖掘系统
近年来,微博等社交网络蓬勃发展,蕴藏着海量用户观点、生活感悟及人际关系等宝贵信息。然而,庞大的数据规模和获取难度为社交网络数据挖掘带来了挑战。为此,本系统基于Hadoop架构,构建了一个集分布式数据库、并行爬虫、并行数据处理和并行数据挖掘算法集于一体的并行社交网络挖掘系统。该系统能够高效获取和分析海量社交网络数据,为社团分析、用户行为分析、用户分类、微博分类等研究提供有力支持。
数据挖掘
2
2024-05-19
基于大数据技术的社交网络用户兴趣个性化推荐模型研究
为了克服传统分析方法易受噪声和人为因素干扰导致分析结果不准确的缺陷,本研究提出了一种基于大数据的社交网络用户兴趣个性化推荐模型。该模型以矢量空间模型为基础,深入分析了用户兴趣推荐模型的结构及其与周边模型的交互关系,并在此基础上划分了服务器网络部署模块,设计了模型的运行网络结构。为了提高模型的效率和可扩展性,本研究利用MapReduce模型将任务分发到分布式计算机集群中,从而构建出能够满足用户个性化需求的推荐模型。此外,模型还利用了大数据双层关联规则数据挖掘技术来获取用户感兴趣的网络数据,并根据推荐结果评估用户对推荐内容的兴趣程度。实验结果显示,该分析方法的准确率高达98%,且对大规模社交网络用户的个性化推荐具有良好的可扩展性,能够有效提升推荐效果。
数据挖掘
6
2024-05-25