邻域系统
当前话题为您枚举了最新的 邻域系统。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Matlab编程-8邻域算法
Matlab编程-8邻域算法。简单的函数实现。
Matlab
2
2024-07-29
基于邻域系统密度差异的高效离群点检测算法
在离群点检测领域,传统LOF算法在高维离散数据检测中精度较低,且参数敏感性较高。为了解决这一问题,提出了NSD算法(Neighborhood System Density Difference)。该算法基于密度差异度量的邻域系统方法,具有较高的检测精度和低参数敏感性。NSD算法的核心步骤如下:
截取距离邻域计算:首先计算数据集中对象在截取距离内的邻居点个数。
邻域系统密度计算:其次,计算对象的邻域系统密度,从而确定对象与邻域数据间的密度差异。
密度差异比较:通过比较对象密度和邻居密度,评估对象与邻域数据趋向于同一簇的程度,判断离群点的可能性。
输出离群点:最终识别出最可能是离群点的对象。
通过实验对比,NSD算法在真实数据集和合成数据集上表现出优越的性能,具有更高的检测准确率、更高的执行效率以及更低的参数敏感性,相比LOF、LDOF和CBOF算法,展示了良好的应用前景。
数据挖掘
0
2024-10-30
Matlab中的邻域均值滤波技术
Matlab中的邻域均值滤波技术涵盖了两种处理边界情况的方法:边界处理时限制在图像内部和超出边界时用0填充处理。
Matlab
2
2024-07-16
基于邻域辨别力的特征选择方法
特征选择作为模式识别、机器学习和数据挖掘的关键预处理步骤,其重要性不言而喻。邻域作为分类学习中的核心概念,能够有效区分决策不同的样本。我们提出一种新的邻域辨别力指数,用于量化邻域关系中的差异信息,进而反映特征子集的区分能力。区别于传统的基于邻域相似度的方法,该指数直接利用邻域关系的基数进行计算。为了全面捕捉多个特征子集组合带来的区分信息变化,我们进一步扩展了辨别力指数,引入了联合辨别力指数、条件辨别力指数以及互信息辨别力指数。这些扩展指标与香农熵及其变体具有相似的性质。针对实值数据的分析,我们在辨别力指数中引入了一个名为“邻域半径”的参数。基于提出的辨别力指数,我们定义了候选特征的显著性度量,并设计了一种贪婪特征选择算法。实验结果表明,基于辨别力指数的算法相较于其他经典算法,取得了更优的性能。
数据挖掘
4
2024-05-21
基于方形对称邻域的局部离群点检测
针对 NDOD 算法检测过渡区域对象的不足和算法复杂度高的问题,提出了一种基于方形对称邻域的局部离群点检测方法。该方法采用方形邻域,引入记忆思想,并重新定义离群度度量,提高了检测精度和速度。实验结果表明,该方法优于 NDOD 等算法。
数据挖掘
2
2024-05-25
MATLAB应用全解析邻域分析窗口类型详细介绍
在图8.33中,展示了24种不同的邻域分析窗口类型,每一种都有其独特的特点和适用场景。这些窗口类型在MATLAB中的应用能够为各类数据分析提供全面的解决方案。
Matlab
2
2024-07-19
Matlab高光谱波段选择的优化邻域重构代码
此代码提供了Matlab实现的论文“通过最佳邻域重构的高光谱波段选择”,刊载于IEEE地球科学与遥感事务(T-GRS),DOI:10.1109/TGRS.2020.2987955。demo.m展示了一种简单直接的方法来运行ONR算法,评估.m提供了易于扩展的代码框架,以评估不同数据集上的不同波段选择方法。运行评估.m可获得分类精度曲线。为了成功运行评估.m,需首先安装适用于Matlab的Libsvm。另外,如果要在印度松树之外的数据集上评估算法,还需提前下载相应数据集。Libsvm链接:高光谱图像数据集链接:印度松树数据集、帕维亚大学数据集、盐沼数据集、KSC数据集、博茨瓦纳数据集。如果使用我们的代码,请引用我们的论文。希望您能从我们的代码中获益。
Matlab
0
2024-08-10
变邻域搜索算法求解0-1背包问题
变邻域搜索算法(VNS)是一种元启发式算法,用于解决组合优化问题,例如0-1背包问题。VNS通过系统地更改搜索邻域来探索解空间,以找到问题的最佳或近似最佳解决方案。
在0-1背包问题中,目标是从一组物品中选择一些物品放入背包,以最大化背包中物品的总价值,同时不超过背包的重量限制。每个物品都有一个价值和一个重量,并且每个物品只能被选择一次(0-1决策)。
VNS算法通过以下步骤解决0-1背包问题:
初始化: 生成一个初始解,例如随机选择一些物品放入背包。
邻域搜索: 定义多个邻域结构,每个结构代表一种修改当前解的方法,例如交换物品、添加物品或移除物品。
迭代改进: 在当前解的每个邻域中搜索改进的解。如果找到更好的解,则将其设为当前解,并返回步骤2。
终止条件: 当满足终止条件时,例如达到最大迭代次数或找到满意解,则算法停止。
VNS算法的优点在于它能够逃离局部最优解并探索更广泛的解空间。通过使用不同的邻域结构,VNS可以系统地搜索解空间的不同区域,从而提高找到全局最优解的可能性。
算法与数据结构
5
2024-05-20
基于改进非支配邻域免疫算法的MATLAB目标优化代码
该资源提供了一套基于MATLAB的优化与控制模型代码,采用改进的非支配邻域免疫算法实现目标优化。代码结构清晰,注释完整,方便用户理解和使用。
Matlab
2
2024-05-23
MATLAB开发数字高程模型8连通邻域曲率计算
在MATLAB开发中,计算数字高程模型(DEM)的8连通邻域曲率是常见的任务。曲率是描述地形起伏变化的重要参数,通常用于地形分析和特征提取。以下是计算8连通邻域曲率的基本步骤:
获取数字高程模型数据,通常以矩阵形式表示。
定义邻域:8连通邻域指的是每个像素周围的8个邻居。
计算每个像素点的曲率:利用二阶差分计算法,结合相邻像素点的高程值来估算曲率。
结果分析:生成曲率图,分析地形变化。
通过以上步骤,MATLAB能够有效地计算和可视化DEM数据的8连通邻域曲率,用于地形分析、洪水模拟等多种应用。
Matlab
0
2024-11-06