此代码提供了Matlab实现的论文“通过最佳邻域重构的高光谱波段选择”,刊载于IEEE地球科学与遥感事务(T-GRS),DOI:10.1109/TGRS.2020.2987955。demo.m展示了一种简单直接的方法来运行ONR算法,评估.m提供了易于扩展的代码框架,以评估不同数据集上的不同波段选择方法。运行评估.m可获得分类精度曲线。为了成功运行评估.m,需首先安装适用于Matlab的Libsvm。另外,如果要在印度松树之外的数据集上评估算法,还需提前下载相应数据集。Libsvm链接:高光谱图像数据集链接:印度松树数据集、帕维亚大学数据集、盐沼数据集、KSC数据集、博茨瓦纳数据集。如果使用我们的代码,请引用我们的论文。希望您能从我们的代码中获益。
Matlab高光谱波段选择的优化邻域重构代码
相关推荐
MATLAB UVE建模汽车SPA波段选择工具
MATLAB UVE建模汽车SPA波段选择工具用于光谱或数据的分类和回归。
Matlab
1
2024-07-27
高光谱图像分解Matlab代码-KMES开源资源下载
高光谱图像分解Matlab代码已经提供,您可以免费下载使用。
Matlab
4
2024-07-28
高光谱超分辨率数据融合Matlab代码 - HiBCD
这是用于高光谱超分辨率中耦合结构矩阵分解的混合不精确块坐标下降(HiBCD)Matlab代码,已在IEEE信号处理事务中发表。在半真实数据集实验中,您可以在提供的链接下载真实HS图像,并运行相应脚本以获取数据矩阵。合成数据集实验也包含在内,参考了吴瑞元、开海Wai和马永健的研究。专注于高光谱超分辨率(HSR)中的耦合结构矩阵。
Matlab
2
2024-07-28
高光谱汽车图像分析高光谱汽车显微镜和光谱工具箱的应用
高光谱CARS显微镜和光谱工具箱使研究人员能够方便地分析他们的数据。该工具箱专注于图像融合、去噪和光谱学的研究与开发。
Matlab
0
2024-08-26
基于改进非支配邻域免疫算法的MATLAB目标优化代码
该资源提供了一套基于MATLAB的优化与控制模型代码,采用改进的非支配邻域免疫算法实现目标优化。代码结构清晰,注释完整,方便用户理解和使用。
Matlab
2
2024-05-23
基于邻域辨别力的特征选择方法
特征选择作为模式识别、机器学习和数据挖掘的关键预处理步骤,其重要性不言而喻。邻域作为分类学习中的核心概念,能够有效区分决策不同的样本。我们提出一种新的邻域辨别力指数,用于量化邻域关系中的差异信息,进而反映特征子集的区分能力。区别于传统的基于邻域相似度的方法,该指数直接利用邻域关系的基数进行计算。为了全面捕捉多个特征子集组合带来的区分信息变化,我们进一步扩展了辨别力指数,引入了联合辨别力指数、条件辨别力指数以及互信息辨别力指数。这些扩展指标与香农熵及其变体具有相似的性质。针对实值数据的分析,我们在辨别力指数中引入了一个名为“邻域半径”的参数。基于提出的辨别力指数,我们定义了候选特征的显著性度量,并设计了一种贪婪特征选择算法。实验结果表明,基于辨别力指数的算法相较于其他经典算法,取得了更优的性能。
数据挖掘
4
2024-05-21
高光谱解混的非负矩阵分解Matlab程序
该Matlab程序利用非负矩阵分解技术,对高光谱数据进行解混操作,适用于图形图像处理领域。
Matlab
4
2024-05-25
相空间重构代码
使用此代码直接将重构数据粘贴到 Matlab 中并运行,即可完成相空间重构。重构后可继续进行其他分析。
算法与数据结构
5
2024-05-13
高光谱数据分析工具箱SULoRA代码实现详解
此工具箱中的代码实现SULoRA,用于高光谱数据分析,采用具有低秩属性嵌入的子空间分解技术。洪丹凤和朱潇湘的研究表明,该方法在处理高光谱数据时表现出色。如需引用,请参考他们在IEEE信号处理选定主题期刊发表的论文(2018年,第12卷,第6期,页码1351-1363)。系统兼容Windows 10操作系统。
Matlab
0
2024-08-13