Deep Belief Network
当前话题为您枚举了最新的Deep Belief Network。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Deep Belief Network(DBN)Based Handwritten Digit Recognition Implementation
Code provided by Ruslan Salakhutdinov and Geoff Hinton. Permission is granted for anyone to copy, use, modify, or distribute this program and accompanying programs and documents for any purpose, provided this copyright notice is retained and prominently displayed, along with a note saying that the o
Matlab
6
2024-11-06
dbnmatlab代码-Pseudo_Boosted_Deep_Belief_Network_ICANN_2016_源代码
提供了伪增强深度信任网络(Pseudo_Boosted_Deep_Belief_Network)论文中的源代码,发布于ICANN 2016,由段铁航与Sargur N. Srihari等人撰写。源代码使用MATLAB编写,所有内容从零开始实现,并且已在MATLAB 2015a版本上进行了测试。
要运行该模型,用户需要完成以下步骤:1) 下载MNIST数据集(包括四个文件:t10k-images.idx3-ubyte, t10k-labels.idx1-ubyte, train-images.idx3-ubyte, train-labels.idx1-ubyte),可从Yann LeCun的网站
Matlab
5
2024-11-05
ESP_DNN Graph Convolutional Deep Neural Network for Electrostatic Potential Surface Prediction in DFT(MATLAB Source Code)
ESP-DNN: Graph Convolutional Deep Neural Network for Predicting Electrostatic Potential Surfaces from DFT Calculations
This repository contains trained models and code designed for generating ligands and proteins, creating electrostatic potential (ESP) surfaces that closely resemble DFT-quality mole
Matlab
5
2024-11-06
Generalized Neural Network Clustering Algorithm for Network Intrusion
在IT领域,聚类算法是数据挖掘中的重要分支,用于发现数据集中的自然群体或类别。此名为“广义神经网络的聚类算法-网络入侵聚类”的案例中,主要使用MATLAB进行开发,展示了针对网络入侵检测的聚类分析。网络入侵聚类在网络安全中是关键问题,特别是在异常检测领域。MATLAB的神经网络库提供了强大的工具,能够构建并训练不同类型的广义神经网络(GNN)。GNN作为一种非监督学习方法,通过加权距离计算形成聚类,尤其适用于处理复杂的非线性问题。
聚类算法在异常检测中的应用主要是通过识别与正常流量显著不同的模式,来发现潜在的入侵行为。此案例中,可能用到了自适应共振理论(ART)或自组织映射(SOM),这些网络
算法与数据结构
6
2024-10-27
MATLAB_BP_Neural_Network_And_GABP_Network_Example
MATLAB BP神经网络以及GABP神经网络,包括数据.mat,并附有详细注释,便于更改和理解。
Matlab
5
2024-11-04
Deep Learning Trends and Fundamentals
深度学习历史趋势
一、深度学习历史趋势
神经网络的众多名称和命运变迁:
早期发展:20世纪50年代末至60年代初,神经网络研究开始兴起,受到广泛关注。
第一次寒冬:1970年代,由于理论和技术上的限制,神经网络研究进入低谷期。
反向传播算法的引入:1980年代中期,反向传播算法的提出极大地推动了神经网络的研究和发展。
第二次寒冬:1990年代中期,尽管有了突破性的进展,但由于计算资源和数据量的限制,神经网络再次遭遇挫折。
深度学习的复兴:21世纪初至今,随着GPU技术的发展、大数据时代的到来以及算法的不断创新,深度学习迎来了爆发式的增长。
与日俱增的数据量:
互联
算法与数据结构
8
2024-10-31
GPS Network Adjustment MATLAB Code
GPS网平差的matlab程序,亲自编写,代码有很详细的注释。
Matlab
6
2024-10-31
MATLAB Wavelet Neural Network Algorithm
用于小波神经网络MATLAB程序模拟,建议初学者好好看看,有一定作用。
Matlab
4
2024-11-03
BP_Network_Weight_Prediction
通过本实验的学习,使学生了解BP神经网络基本知识,掌握利用这种算法并进行预测的主要步骤。选择相关数据,利用BP网络建立神经网络并进行预测。
Matlab
7
2024-11-03
Advanced MongoDB Part 3 Deep Dive
In this part of our MongoDB series, we delve deeper into advanced MongoDB concepts, covering topics such as sharding, replication, and aggregation pipelines. By mastering these, you can optimize database performance and ensure high availability in large-scale applications. Sharding allows MongoDB to
MongoDB
9
2024-10-25