希尔伯特变换

当前话题为您枚举了最新的 希尔伯特变换。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

复序列的希尔伯特变换关系
复序列的实部和虚部之间存在类似于希尔伯特变换关系的卷积关系。这种关系在带通信号表示为复信号时特别有用。 因果性可以用来推导复序列的希尔伯特变换关系。由于我们关注的是复序列的实部和虚部之间的关系,所以因果性应用于序列的傅里叶变换。 虽然不能要求序列的傅里叶变换在 ω=0 时为零,因为它具有周期性,但我们可以定义因果性为傅里叶变换在每一周期的后半部分为零,即 z 变换在单位圆的下半部分 (-π≤ω≤0) 为零。 设 s(n) 表示序列,S(ejω) 表示其傅里叶变换,则因果性要求是: S(ejω)≡0, -π≤ω≤0 (7.41) 对应于 S(ejω) 的序列 s(n) 必然是复序列,因为实序列要求 S(e-jω) = S*(ejω)。 因此,我们将复序列 s(n) 表示为: s(n) = sr(n) + jsi(n) (7.42) 其中 sr(n) 和 si(n) 都是实序列。 类似于模拟信号理论中的解析信号,我们可以将 s(n) 这样的复序列称为解析信号。 对于任意序列 s(n),存在一个对应的限带模拟信号 sa(t),使得: sa(t) = s(n) for nt ≤ t < (n+1)t 因此,如果 S(ejω) = 0 for |ω| > π,则信号 sa(t) 是 t 的解析函数。 从这个意义上说,序列 s(n) 确实对应于解析信号。
离散希尔伯特变换的数学推导和应用
在几乎所有利用傅里叶方法表示和分析物理过程的领域中,傅里叶变换的实部和虚部之间存在着希尔伯特变换关系。在数字信号处理中,这种关系对于理解和处理因果序列的特性至关重要。本章将推导并探讨这些关系在解析信号与z变换中的应用,特别是如何利用希尔伯特变换关系来确定信号的复部分。这些理论不仅在理论研究中有重要价值,也在实际应用中广泛影响着信号处理领域。
如何在Matlab中实现希尔伯特曲线
在Matlab中实现希尔伯特曲线是一个有趣且具有挑战性的任务。希尔伯特曲线被定义为填充一个区域的连续曲线,其构造涉及到递归和空间填充曲线的概念。通过Matlab的绘图函数和递归算法,可以精确地生成这种曲线,展示其独特的几何特征。
matlab中的希尔伯特包络谱分析工具
这个程序是为了在matlab中实现希尔伯特包络谱分析,用于处理故障信号,可以生成信号的频谱图。
优化后的PaddedHilbert函数填充后的希尔伯特变换在Matlab开发中的应用
该函数计算数据经过填充后的希尔伯特变换,以提高最终效果。它根据希尔伯特变换的定义进行计算,虽然在速度上尚未进行优化。需要注意的是,此函数计算信号本身的希尔伯特变换,与Matlab信号处理工具箱中的hilbert函数不同,后者计算解析信号。您可以简单地使用方程analyticFunction = 1i*paddedHilbert(y)+y来计算解析函数。如有改进建议,请留言或联系我。
将希尔伯特-黄HHT中的EMD分解工具整合入Matlab的工具箱中
随着将希尔伯特-黄HHT中的EMD分解工具整合入Matlab的工具箱中,用户即可轻松使用这一工具。
MATLAB中的PCP和RPCA代码 特伦特
PCP和RPCA在MATLAB中的代码最新更新日期为2018年1月28日,当前版本为1.0.10。这个LRSLibrary提供了视频背景建模和减法的低秩和稀疏工具集合。LRSLibrary不仅限于运动分割,在其他计算机视觉问题中也有广泛的应用。该库包含100多种基于矩阵和张量方法的算法。LRSLibrary已在多个MATLAB版本(如R2014、R2015、R2016、R2017的x86和x64版本)上通过测试,最低要求为R2014b。
阿拉伯银行市场细分
本研究采用财务比率对 92 家阿拉伯银行进行市场细分,使用因子和聚类分析将银行分为五个组。通过多判别分析,发现覆盖率、获利能力和效率对区分组别最有帮助。
等价变换
任意y,如果学生95002选修了y,那么学生x也选修了y。不存在这样的课程y,学生95002选修了y,而学生x没有选。
自伴变换与斜自伴变换
自伴变换与斜自伴变换 除了正交变换,欧氏空间中还有两类重要的规范变换:自伴变换和斜自伴变换。 定义 设 A 是 n 维欧氏空间 V 的线性变换。 如果 A 与它的伴随变换 A∗ 相同,即 A = A∗,则 A 称为自伴变换。 如果 A 满足 A∗ = −A,则 A 称为斜自伴变换。 线性变换 A 是自伴变换的充分必要条件是:对任意 α,β ∈ V,均有 (A(α), β) = (α, A(β))。 线性变换 A 是斜自伴变换的充分必要条件是:对任意 α,β ∈ V,均有 (A(α), β) = −(α, A(β))。 自伴变换和斜自伴变换都是规范变换。当然,除了正交变换、自伴变换以及斜自伴变换外,还有其他的规范变换。 自伴变换 定理 n 维欧氏空间 V 的线性变换 A 是自伴变换的充分必要条件是:A 在 V 的标准正交基下的方阵是对称方阵。 证明 设线性变换 A 在 V 的标准正交基 {α₁, α₂, ..., αn} 下的方阵是 A,则 A 的伴随变换 A∗ 在这组基下的方阵是 AT。于是 A∗ = A 等价于 AT = A。∎ 定理表明,如果在 n 维欧氏空间 V 中取定一组标准正交基 {α₁, α₂, ..., αn},V 的自伴变换 A 便和它在这组基下的方阵相对应。这一对应是 V 的所有自伴变换集合到所有 n 阶实对称方阵集合上的一个双射。于是自伴变换即是是对称方阵的一种几何解释。 由于自伴变换是规范变换,因此关于规范变换的结论可以移到自伴变换上。当然,由于自伴变换是特殊类型的规范变换,所以相应的结论也带有某种特殊性。 由实对称方阵的特征值都是实数可知,自伴变换的特征值也都是实数。 定理 设实数 λ₁, λ₂, ..., λn 是 n 维欧氏空间 V 的自伴变换 A 的全部特征值,其中 λ₁ ≥ λ₂ ≥⋯ ≥ λn。则存在 V 的一组标准正交基,使得 A 在这组基下...