流处理引擎
当前话题为您枚举了最新的 流处理引擎。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Oozie 工作流引擎
Oozie 是 Cloudera 公司为 Apache 开源的工作流引擎框架,用于在 Hadoop 平台上管理和调度作业。
Hadoop
9
2024-05-13
spark流处理
Spark Streaming是Spark核心API的扩展之一,专门用于处理实时流数据,具备高吞吐量和容错能力。它支持从多种数据源获取数据,是流式计算中的重要工具。
spark
10
2024-07-13
Apache Flink 流处理
Apache Flink 是一个开源框架,使您能够在数据到达时处理流数据,例如用户交互、传感器数据和机器日志。 通过本实用指南,您将学习如何使用 Apache Flink 的流处理 API 来实现、持续运行和维护实际应用程序。
Flink 的创建者之一 Fabian Hueske 和 Flink 图处理 API (Gelly) 的核心贡献者 Vasia Kalavri 解释了并行流处理的基本概念,并向您展示了流分析与传统批处理的区别。
flink
10
2024-05-12
Azkaban工作流执行引擎安装指南
Azkaban是一款用于调度和管理大数据处理任务的开源工作流执行引擎。它提供了一个方便的Web界面,用户可以在其中创建、管理和监控工作流。安装Azkaban的过程包括下载并解压azkaban-web-server-0.1.0-SNAPSHOT.tar.gz压缩包,配置所需的Java Development Kit (JDK)、数据库(如MySQL或H2)以及Apache Maven等环境,然后修改配置文件并通过Maven进行编译和启动。详细步骤包括解压文件、环境准备、配置文件修改、编译打包、启动服务以及初始化数据库。最终,用户可以通过浏览器访问Web界面来管理其工作流。
Hadoop
10
2024-07-16
Oracle BPEL工作流引擎的应用
SOA架构中,BPEL作为关键组件,为企业流程管理提供了强大的支持。
Oracle
9
2024-09-14
Storm实时流处理流程
Storm的工作流程可以概括为以下四个步骤:
用户将Topology提交到Storm集群。
Nimbus负责将任务分配给Supervisor,并将分配信息写入Zookeeper。
Supervisor从Zookeeper获取分配的任务,并启动Worker进程来处理任务。
Worker进程负责执行具体的任务。
Storm
9
2024-05-12
处理Kafka数据流
使用Spark Streaming处理Kafka数据流时,需要将 spark-streaming-kafka-assembly_2.11-1.6.3.jar 添加到PySpark环境的 jars 目录中。该jar包提供了Spark Streaming与Kafka集成所需的类和方法,例如创建Kafka DStream、配置消费者参数等。
spark
9
2024-04-29
Strom实时流处理框架应用
Strom 应用场景
电商领域* 实时推荐系统: 基于用户实时下单或加入购物车行为,推荐相关商品,提升用户体验和销售转化率。
网站分析* 流量统计: 实时监测网站流量变化,为运营决策提供数据支撑。
其他领域* 监控预警系统: 实时监控系统指标,及时发现异常并触发告警,保障系统稳定运行。* 金融系统: 实时处理交易数据,进行风险控制和欺诈检测。
Storm
11
2024-05-12
流处理平台功能架构解析
流处理平台通过整合数据采集、处理和管理功能,实现对实时数据流的高效处理。其核心架构包含以下几个关键部分:
1. 数据采集中心: 负责从各种数据源(例如传感器、应用程序日志等)实时收集数据。平台支持配置不同的采集任务,以适应不同的数据源和数据格式。
2. 数据处理中心: 这是平台的核心,负责对采集到的数据进行实时处理。平台提供多种数据处理组件(例如数据清洗、转换、聚合等),并支持使用SQL和Java等语言进行自定义数据处理逻辑的开发。
3. 管理中心: 提供平台的管理和监控功能,包括任务配置、流程监控、资源管理等。用户可以通过管理中心监控平台的运行状态,并对平台进行配置和优化。
4. 统一数据
Hadoop
8
2024-05-31
阿里巴巴的流计算引擎: Apache Flink 中文解读
深入了解阿里巴巴采用的流计算引擎 Apache Flink,探索其在中文环境下的应用。
flink
10
2024-05-14