能量管理

当前话题为您枚举了最新的 能量管理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

数据挖掘在能量管理系统中的应用
数据挖掘技术可优化能量管理系统,分析能耗数据,提高能源效率和可持续性。
数据质量管理和性能量化的技术调研
对数据质量管理和性能量化进行了深入探讨,为相关领域的专业人士提供实用信息和洞见。
能量检测模拟寻找阈值的仿真
这里我们通过仿真来计算能量检测的阈值。这种方法通用于各种能量检测场景,假设所有信号为复杂的高斯信号。算法如下:1.假设接收到的是纯噪声,即主用户不在。2.如果唯一的噪声能量高于阈值,则对应虚警。3.重复此场景进行多次迭代。4.误报概率=能量高于阈值/迭代次数。如需绘制ROC曲线,请参考同一作者其他发布的MATLAB代码。
小波包能量谱matlab程序改写
我编写了一个用于信号进行小波包分解后计算各节点能量的matlab程序。
MATLAB开发数值能量法的比较研究
MATLAB开发:数值能量法的比较研究。对数值积分方法进行了比较分析,涵盖了梯形法、辛普森法则、中点法等几种方法。
基于Matlab的能量检测模拟再销售
基于仿真技术的认知无线电能量检测门限码,针对Matlab开发再销售。
协作能量检测性能的MATLAB仿真分析
单节点与协作能量检测性能的ROC曲线分析如下: 虚警概率与漏检概率的比较图。 检测概率与漏检概率的比较图。
基于能量的集成特征选择方法(2012年)
特征选择是机器学习和数据挖掘领域的关键问题之一,而特征选择的稳定性也是目前的一个研究热点。基于能量学习模型,分析了基于局部能量的特征选择方法,并根据集成特征选择的原理,对基于局部能量的特征排序结果进行集成,以提高算法的稳定性。在现实数据集上的实验结果表明,集成特征选择可以有效提高算法的稳定性。
matlab编写代码实现非线性能量算子
matlab编写代码实现瞬时能量估算M文件,用于计算非线性能量算子,包括Teager-Kaiser运算符和频率加权瞬时能量。需要Matlab或Octave编程环境。更新(2019年9月):Python版本代码实现了相同的频率加权瞬时能量方法。详细介绍了Teager-Kaiser运算符及其在离散信号处理中的应用,以及希尔伯特变换的离散形式。参考文献提供了进一步的背景和实施细节。以下是一个简单的示例代码,生成两个正弦信号的Teager-Kaiser运算符和建议的包络-微分运算符: % 生成两个正弦信号:
基于模糊能量管理的20kW光伏和风电混合系统并网的研究
随着技术的进步,研究表明基于模糊能量管理的20kW光伏和风电混合系统并网具有显著的能源管理优势。