价格分析
当前话题为您枚举了最新的 价格分析。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
汽车价格预测模型分析与比较
该项目通过收集网站上的汽车广告数据,运用线性回归和支持向量回归(SVR)模型预测特定汽车的价格。研究比较了这两种模型的效果,分析了市场收集的汽车价格及其特征对预测的影响。线性回归是一种简单而常用的数据挖掘技术,SVR则能更有效地处理非线性关系,两者均展示了在汽车价格预测中的应用潜力。
数据挖掘
3
2024-07-18
房屋价格分析Excel与统计数据应用
房屋价格受多种因素影响,如平方英尺、材料表面光洁度和地理位置等。研究分析这些因素对房屋销售价格的影响。统计分析是确定关键因素的重要工具。数据集来自Kaggle,包含79列和1,460个观测值,适用于爱荷华州埃姆斯市。
统计分析
2
2024-07-16
CBD距离与房屋价格的空间异质性分析
房屋价格与CBD距离的空间异质性研究显示,不同的空间单元聚合方式会显著影响统计分析结果。尺度效应和划区效应是影响分析结果的主要因素,可塑性面积单元问题进一步揭示了区域数量、规模和形状对空间数据分析的重要性。
统计分析
0
2024-09-14
Python数据分析实战-北京二手房屋价格分析.zip
Python数据分析实战-链家北京二手房价分析分析目标1、查看北京二手居民住房的分布价格情况,Part 1-数据读取和预处理; 2、理解变量、数据选取、重复值缺失值处理,Part 2 -北京市房源分布; 3、数量、单价、总价,Part 3 -各城区房源分布,Part 4 -各城区房价分布; 4、单价分布、总价分布、高价Top15小区、低价Top15小区,Part 5 -各城区房源面积分布; 5、全市平均面积分布、各城区总面积分布,Part 6 -房价与房源特性的关系。
数据挖掘
0
2024-08-03
二手车交易价格预测:数字特征分析
基于天池大赛“零基础入门数据挖掘–二手车交易价格预测”的数据集,对二手车交易价格的数字特征进行分析。分析内容包括:1. 相关性分析: 分析各个数字特征与目标变量(二手车交易价格)之间的相关性,识别关键影响因素。2. 偏度和峰度分析: 计算并可视化各个数字特征的偏度和峰度,判断数据分布特征,例如数据是否对称、是否存在异常值等。3. 单变量分布可视化: 使用直方图、密度图等可视化方法展示各个数字特征的分布情况,直观了解数据的集中趋势和离散程度。4. 双变量关系可视化: 使用散点图、热力图等可视化方法展示数字特征两两之间的关系,探索特征之间的潜在关联。5. 多变量回归分析: 建立多个数字特征与目标变量之间的回归模型,量化分析各个特征对目标变量的影响程度。上述分析将使用Python语言和相关数据分析库实现,例如Pandas、NumPy、Scikit-learn、Matplotlib等。
数据挖掘
4
2024-05-29
自动采集优站程序优化上传商品分类与价格自动分析
优化过的格格团站点程序,实现商品上传自动分类和价格分析,并具备自动采集功能。
Access
0
2024-10-13
价格数据自动采集小程序
步骤一:区域选择点击“price0 area”按钮,选择需要截图的区域。步骤二:数字识别点击“price0 dist”按钮,识别所选区域内的数字。请确保区域内仅包含数字、负号和小数点,程序不支持识别所有字体。步骤三:采集设置- 勾选“collect num”并填写需要采集的数字个数,或勾选“collect time”并设置时间范围进行数据采集。- 一天内可设置两个时间段,但时间段不可重叠。步骤四:间隔设置设置采集时间间隔。步骤五:开始采集点击“start price0 collect”按钮开始采集数据,采集完成后程序对话框将自动弹出。
算法与数据结构
3
2024-05-19
Matlab应用电力负荷与价格预测网络研讨会案例分析
Matlab应用:电力负荷与价格预测网络研讨会案例分析。演示文稿和Matlab®代码,展示系统负荷和价格预测的实际案例研究。
Matlab
0
2024-08-25
农产品价格数据集
包含 2.2 万条农产品价格数据,包括:品种、批发市场、最低价、最高价、平均价、发布时间、分类可用于数据分析、可视化、建模和回归分析
数据挖掘
8
2024-04-30
基于地统计分析的兰州市住宅价格空间变化研究
陈强、李丁在中运用统计学中的趋势分析方法,对兰州市住宅价格的空间变化趋势进行了详细分析。研究采用普通克里格空间插值方法进行空间局部估计,并结合GIS技术进行了进一步的地理信息分析。
统计分析
2
2024-07-15