劳斯近似
当前话题为您枚举了最新的 劳斯近似。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
文本近似度匹配
使用python实现文本近似度匹配,从b列中查找与a列文本最相似的值及近似度。
例如:a列:白术b列:白术、炒白术、黄芩
输出:相似的值:白术、炒白术近似度:1
算法与数据结构
15
2024-04-30
帕斯卡劳根的matlab代码线性跟驰模型
帕斯卡劳根提供的matlab代码展示了一个线性跟驰模型的实现。这段代码演示了如何利用数学模型和算法来实现跟随目标的功能。
Matlab
13
2024-09-30
MySQL近似值函数解析
MySQL提供的round(x)函数负责计算离x最近的整数,round(x,y)函数负责计算离x最近的小数(小数点后保留y位);truncate(x,y)函数负责返回小数点后保留y位的x(舍弃多余小数位,不进行四舍五入)。
MySQL
13
2024-11-03
The Design of Approximation Algorithms近似算法教材
哥本哈根大学的近似算法课程笔记,整理成了一本还挺扎实的开源教材《The Design of Approximation Algorithms》。讲的都是实打实能用的算法技巧,比如贪婪算法、局部搜索、动态规划、线性规划这些经典玩意儿。
每一章都讲一个技术点,立马给你几个问题场景直接套上。讲完基础部分还不算完,后面还有进阶玩法,比如乘法权重、在线算法这些大数据场景下吃香的思路,都是手把手教你怎么上手。
书的语气虽然是研究生教材,但阅读起来还挺友好,尤其你要是有一点算法和数学功底,基本看得懂。里面还包含了哥大、MIT 等课程的讲义内容,不光讲原理,还配了不少实际应用,比如网络设计、资源调度这些在工程
算法与数据结构
0
2025-06-16
贝叶斯公式与朴素贝叶斯
贝叶斯公式描述了事件在已知条件下发生的概率。朴素贝叶斯是一种机器学习算法,它假设特征在给定类的情况下相互独立。
算法与数据结构
18
2024-05-13
数据流近似频繁项挖掘算法
数据流的频繁项挖掘,用起来最头疼的就是资源吃紧还不能多次遍历数据。你要是也被这个问题困扰过,可以看看这篇文章提出的算法,挺轻巧的一个思路,专门用来近似频繁项挖掘的问题,关键是速度快,内存占用还少。空间复杂度只有 O(ε⁻¹),意思就是内存用得省。每来一个数据项,平均时间也就 O(1),适合那种高频高速的数据流。像网络日志、传感器数据这些场景,挺适合直接上。整个算法核心就仨步骤:初始化、更新、查询。初始化时搞个紧凑的数据结构,比如滑动窗口;一边读数据一边更新;想查哪个项的频率就查,挺快的。误差也可控,你可以通过调整 ε,来平衡准确性和性能。对了,它实验过多数据集,表现还不错,在大规模数据下也跑得
数据挖掘
0
2025-07-05
MATLAB实现布莱克-斯克尔斯期权定价模型
布莱克-斯克尔斯-默顿期权定价模型(Black-Scholes-Merton Option Pricing Model),通过MATLAB编程实现。
Matlab
11
2024-08-22
利用神经网络近似sin函数
利用神经网络近似sin函数,不使用matlab工具箱,而是自行编写实现。
Matlab
15
2024-07-18
贝叶斯学派观点6.4贝叶斯估计
贝叶斯估计的思路挺的,属于那种一上手就能让人眼前一亮的类型。它不把概率当成现实中发生的频率,而是当成你对某件事的信心值——比如你觉得模型参数是多少,就可以用分布来表达。参数不再是死板的定值,而是有了“性格”的变量,你可以给它们分布,做推断,甚至算个区间,挺有弹性的。点估计、区间估计这些东西在贝叶斯里用起来顺手多了。如果你是搞机器学习、数据挖掘或者对概率建模感兴趣的前端或工程类选手,那这个资源还蛮值得一看。顺手放几个还不错的相关文章,比如状态估计的 Matlab 实现,或者是区间估计在 ANSYS 工程里的应用,都是实用的例子。建议你在用的时候注意一点,贝叶斯方法虽然灵活,但计算量也不小,尤其是
数据挖掘
0
2025-06-18
贝叶斯项目反应建模贝叶斯统计方法应用
贝叶斯项目反应建模其实挺有意思的,主要就是运用贝叶斯统计方法对项目反应数据进行建模。它背后的核心理论是项目反应理论(IRT),广泛应用于教育评估和心理测量领域。知道,传统方法多依赖频率统计,而贝叶斯方法就显得比较灵活,它能结合先验信息和新数据来更新模型,适合不确定性。对于需要估计能力水平和测试题目特性的研究来说,贝叶斯方法的强大潜力不言而喻。你如果做这方面的研究,不妨看看 Jean-Paul Fox 的书《Bayesian Item Response Modeling: Theory and Applications》,里面详细了贝叶斯方法在项目反应建模中的应用,尤其适合社会与行为科学领域的研
算法与数据结构
0
2025-06-24