网络传播学

当前话题为您枚举了最新的 网络传播学。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

社交网络影响力传播研究综述
社交网络影响力传播研究汇集了随机模型、数据挖掘、算法优化和博弈论等技术,主要涵盖影响力传播模型、学习和优化。通过总结计算机科学领域近年的成果,展现了该研究的综合应用。当前面临的挑战和未来研究方向也需要进一步探讨。
基于复杂网络的SIR传播模型(Matlab)
这个Matlab代码基于小世界网络实现,是经典的SIR传播模型。模型中,个体状态经历S(易感)、I(感染)、R(康复)三种阶段。康复者具有免疫力,不再感染。尽管代码实现基本功能,其简洁性有待提高,适合学习SIR传播模型的代码设计思路。
移动通信网络中常用的传播模型
移动通信网络中常用的传播模型 传播模型是基于大量测量数据统计分析得出的无线信号传播经验公式。 奥村模型(Okumura Model)* 完全基于测量数据, 仅提供粗略的指导。 HATA 模型* 适用频率范围: 100-1500 MHz* 适用距离: 1-20 km* 存在环境修正值, 但未考虑地形影响。* 修正后的 HATA 模型适用频率范围: 100-3000 MHz COST-231 模型* 基于奥村模型, 针对高频段传播特性进行了分析。* 适用频率范围: 1500-2000 MHz LEE 模型* 适用于市区或郊区传播场景 射线跟踪模型* 适用于微蜂窝传播场景
基于信任度的社交网络消息传播模型分析
社交网络作为新兴媒体具有广泛社会影响力,其营销方式日益发展。本研究基于日常生活中的信任原理,提出了一种基于信任度的消息传播模型。该模型首先通过数据挖掘算法对个体进行分类,然后计算个体间的信任度,并结合消息与个体属性相似性进行传播范围预测。实验结果显示,该模型相较于基准方法,在准确度上提升了约15%。
GRNN和PNN神经网络传播参数优化方法的探索
探讨了如何优化GRNN和PNN神经网络的传播参数,通过评估不同传播参数值(通常为10或2的幂)的输入向量,解决各种回归或分类问题。
自由空间传播路径损耗模型LOS波传播特例
在自由空间中,最简单的波传播情况是直接视距(LOS)传播,没有地球表面或其他障碍物引起的阻碍。
无线传感器网络拓扑结构下的无线传播模型Matlab实现
详细介绍了在无线传感器网络(WSN)中建立拓扑模型及节点接收信号衰减模型的Matlab实现方法。
快速近邻传播聚类算法
一种快速有效的聚类方法,利用Silhouette指标确定偏向参数,结合局部保持投影方法删除数据冗余信息,处理复杂和高维数据。实验表明,该算法优于传统近邻传播算法。
matlab代码按f5命令窗口-NN字符识别神经网络和反向传播
matlab代码按f5命令窗口执行,用于NN字符识别的神经网络和反向传播。
有限差分传播方法FDBPM在自由空间中传播高斯脉冲的MATLAB开发
使用有限差分模拟在自由空间中传播1000微米的高斯脉冲。只需运行脚本,您将得到一个由以1微米步长传播的脉冲组成的表面。