Spark原理
当前话题为您枚举了最新的Spark原理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Spark 内存管理原理
该文档深入剖析了 Spark 内存管理的设计,助您深入理解其运作机制。
spark
3
2024-05-12
Spark核心原理深度解析
这份资源提供了对Spark核心原理的全面解析,涵盖了从执行计划到架构设计的各个关键方面。
Spark原理示意图 (Overview.pdf):以图表形式清晰展示Spark的核心概念和工作流程。
逻辑执行计划 (JobLogicalPlan.pdf):深入探讨Spark如何将用户代码转化为逻辑执行计划,为优化奠定基础。
物理执行计划 (JobPhysicalPlan):详细讲解Spark如何将逻辑计划转化为具体的物理执行计划,并分配到集群节点进行执行。
Shuffle机制详解 (shuffleDetails.pdf):剖析Shuffle过程的内部机制,包括数据分区、排序、合并等关键步骤,以及对性能的影响。
Spark架构解析 (Architecture.pdf):揭示Spark的架构设计,包括驱动程序、执行器、集群管理器等组件之间的交互和协同工作机制。
缓存与检查点 (CacheAndCheckpoint.pdf):阐述Spark的缓存和检查点机制,如何有效地提高数据复用率和容错能力。
广播机制 (Broadcast.pdf):介绍广播变量的概念和使用方法,以及如何利用广播机制优化数据传输效率。
spark
3
2024-05-19
Spark架构的核心原理
通过图文详细阐述了Driver、Master、Worker、Executor和Task之间的关联和作用。这些组件共同构成了Spark分布式计算框架的基础,每个组件在整个计算过程中发挥着关键的角色。
spark
4
2024-07-16
Apache Spark 2.4.2 架构原理
深入讲解 Apache Spark 内部架构,适合搭配源码学习。
spark
2
2024-04-30
Spark 数据倾斜:原理与优化
数据倾斜是指在 Spark 的 shuffle 过程中,由于某些 key 对应的 value 数据量过大,导致处理这些数据的 reduce 任务耗时过长,进而拖慢整个 Spark 作业的运行速度。
举例来说,假设有三个 key:hello、world 和 you。hello 对应 7 条数据,world 和 you 各对应 1 条数据。在 shuffle 过程中,这 7 条数据会被拉取到同一个 reduce 任务中进行处理,而另外两个任务只需要分别处理 1 条数据。
在这种情况下,处理 hello 数据的 reduce 任务运行时间可能是其他两个任务的 7 倍,而整个 stage 的运行速度取决于运行最慢的任务。数据倾斜会导致 Spark 作业运行缓慢,甚至可能因为某个任务数据量过大而发生内存溢出 (OOM)。
spark
2
2024-05-15
Spark核心原理与源码解析
深入探讨Spark的核心思想,并结合源码进行详细分析,帮助读者更好地理解Spark的内部机制和工作原理。
spark
2
2024-06-04
Spark核心原理与源码解析
本书以丰富的图示和示例,深度剖析Spark架构、部署模式、工作模块的设计理念、实现源码及使用技巧,为Spark的优化、定制与扩展提供原理性指导。内容基于Spark 1.2.0版本源码,由阿里巴巴集团专家推荐。
spark
5
2024-04-29
Spark-SQL工作原理简介
Spark-SQL工作原理:
SqlParseAnalyserOptimizerSparkPlan
spark
5
2024-04-30
深入解析Spark的技术原理
《Spark技术内幕与原理》是一本深度剖析Spark技术的书籍,详细介绍了其内部机制和操作方式。
spark
0
2024-08-11
图解Spark原理及实践详解
深入解析大数据技术中的Spark原理及实际应用,为读者提供全面的视角。
spark
0
2024-09-21