稳健估计
当前话题为您枚举了最新的稳健估计。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
稳健估计度量
利用 MATLAB 实施测量程序,通过调整权重的大小实现稳健估计。
Matlab
4
2024-04-30
MATLAB中不同权函数处理稳健估计的比较
探讨了MATLAB中稳健估计中几种不同权函数处理方式的比较。
Matlab
2
2024-07-27
基于预判决的频偏估计算法原理-高维数据挖掘中特征选择的稳健方法
基于预判决的频偏估计算法(PADE算法)是一种应用于相干接收机中的前馈式全数字频偏估计方法,主要通过模拟预判决来估计当前符号的频偏,结合环路滤波器抑制噪声影响,有效消除载波频偏对相位调制信号的影响。与传统四次方频偏估计算法不同,PADE算法依赖于前一个输入符号的频偏估计结果,以优化当前符号的频偏估计,最终通过减去估计值来修正频偏引起的相位分量。
数据挖掘
0
2024-08-08
稳健PCA的Matlab代码实现——fastRPCA
这份Matlab代码涵盖了鲁棒PCA和SPCP的多种变体,帮助研究人员快速实现相关算法。
Matlab
0
2024-09-14
构建稳健的分布式系统.pdf
目前的分布式系统,即使运行良好,也往往非常脆弱:难以维护、难以管理、难以扩展、难以演进、难以编程。在这次讨论中,我试图清理我们对这些系统的思考方式,并探讨几个问题,包括故障模型、高可用性、优雅降级、数据一致性、演进、组合和自治性。这些并非(尚未)可证明的原则,而仅是简化实践中设计的思考方式。它们借鉴了在伯克利和Inktomi建立的大规模系统的经验,包括处理全球50%网页搜索的系统。
算法与数据结构
2
2024-07-14
参数估计
正态分布参数估计命令:[muhat, sigmahat, muci, sigmaci] = normfit(X, alpha) (默认alpha为0.05)其中:- muhat:均值点估计- sigmahat:标准差点估计- muci:均值区间估计- sigmaci:标准差区间估计
统计分析
3
2024-05-19
高维数据挖掘中特征选择的稳健方法
针对112Gb/s PM-(D)QPSK系统,特别是具有2.5GHz最大频偏的典型激光器,存在 |△f-f_e|=π/2 或 |f-f_e|=Rs/4 的情况。此时,若能判断频偏估值是否错误,则可利用此规律直接获得正确频偏估值,并将其作为G-PADE的初始设置值。
判断频偏估值正确与否可通过BER轻松实现,因为正确和错误的估值对应着截然不同的BER:一个接近0.5,另一个略大于0。因此,无论初始真实频偏为何值,G-PADE的初始化问题都能得到解决。方法如下:
G-PADE开始工作前,利用四次方法对一段符号进行频偏估计,同时监测该段符号的BER。
通过BER判断估值是否收敛正确。
若正确,则将该段符号的频偏估值作为G-PADE的初始设置频偏值;若错误,则根据 |f-f_e|=Rs/4 计算出正确频偏值,并将其作为G-PADE的初始设置频偏值。
仿真结果表明,数据块长度为1000时,四次方频偏估计算法在不同频偏下的最大可能初始化误差基本相同,平均为0.135GHz。负频偏情况下的结果也基本一致。这表明,当四次方频偏估计算法的数据块长度确定时,无论频偏多大,其用于G-PADE初始化的最大可能误差基本保持不变。数据块长度为1000时,最大误差小于0.2GHz,满足要求。因此,前述方法可行地用于G-PADE的初始化。
数据挖掘
6
2024-05-19
点估计的局限性与区间估计的意义
从样本数据中得到的点估计值,虽然是总体参数的最佳猜测,但无法确定其与真实值之间的接近程度。例如,一项研究发现工作培训使小时工资提高了6.4%,但仅凭这一结果,我们无法得知若全体工人都参与培训,其影响是否会与之相符。由于总体参数未知,我们难以判断特定估计值的准确性。因此,我们需要借助概率陈述来构建区间估计,以更好地理解估计值的不确定性。
算法与数据结构
2
2024-05-23
贝叶斯估计示例状态估计问题的matlab实现
我们在这个示例中使用了两个传感器对状态(x)进行了测量。传感器1给出的测量值为x1=3,传感器2给出的测量值为x2=5。传感器1的噪声是零均值高斯噪声,方差为1;传感器2的噪声是零均值高斯噪声,方差为0.25。我们通过贝叶斯估计求解x及其方差的MMSE估计。根据附加的代码,我们得到状态x的期望值为4.6,方差为0.2。这个结果可能与卡尔曼滤波器的估计有关。
Matlab
2
2024-07-16
最大似然估计
估计理论导论及其在谱分析中的应用。这是一个包含实验数据验证的MATLAB程序。参考书籍:《数字谱分析》,作者弗朗西斯·卡斯塔尼耶编辑。
Matlab
2
2024-07-19