机器学习课程
当前话题为您枚举了最新的机器学习课程。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
机器学习课程代码汇编
吴恩达机器学习编程作业(MATLAB实现)
林轩田机器学习基石课程编程作业(MATLAB实现)
吴恩达机器学习编程作业:
作业一Q15-17
作业一Q18-20
作业二Q16-18
作业二Q19-20
林轩田机器学习基石课程编程作业:
作业三Q7-10
作业三Q13-15
作业三Q18-20
作业四Q13-20
Matlab
2
2024-05-31
机器学习课程作业一改写
提供机器学习课程作业,包含相关示例代码,支持Octave和MATLAB环境。
Matlab
0
2024-08-29
清华机器学习与数据挖掘课程项目
此存储库包含我完成的清华大学机器学习和数据挖掘课程项目。
数据挖掘
5
2024-05-13
Coursera机器学习课程Matlab代码及曲线
此资源涵盖了斯坦福大学Andrew Ng在Coursera平台上教授的机器学习课程,需要约60小时的学习时间投入。课程通过实践教学介绍了机器学习的基础知识,包括线性回归、逻辑回归、神经网络和支持向量机等常见的有监督学习算法。此外,还涵盖了偏差和方差、L2正则化、误差指标以及学习/验证曲线等概念。课程还包括无监督学习算法如k均值聚类和降维技术。最后,课程介绍了推荐系统和大规模机器学习的相关内容。
Matlab
0
2024-08-18
中国科学技术大学机器学习课程资料
这份资料包含中国科学技术大学机器学习课程的PPT、课后习题答案、往年考试试卷以及数据挖掘导论和推荐系统相关的PPT,授课教师为陈恩红老师。
数据挖掘
3
2024-05-21
斯坦福机器学习课程笔记 (06-10)
这份资源包含斯坦福机器学习课程的06-10章节笔记,对课程内容进行了详细的记录和整理。
数据挖掘
3
2024-05-28
Coursera机器学习课程Python代码存在运行问题
这些Python代码来自Coursera的机器学习课程mlclass,由Andrew Ng教授提供。这些代码主要用于取代Matlab/Octave练习,因为一些Octave功能在计算机上无法实现,如绘图。代码涵盖了大多数练习,使用了Numpy、Scipy、Matplotlib、NLTK和Sci-Kit Learn等库。需要注意的是,Python与Octave/Matlab在某些算法的实现上可能有所不同,导致结果略有差异。
Matlab
0
2024-09-26
斯坦福大学机器学习课程个人学习笔记(上)
在这篇学习笔记中,我将深入探讨斯坦福大学机器学习课程中的关键概念,这些内容源自Andrew Ng教授的讲义和教学视频。机器学习作为一门多领域交叉学科,致力于通过经验学习方式让计算机自动化地获取知识,而无需显式编程。将重点关注机器学习的基础理论、模型和算法,探索监督学习、无监督学习和半监督学习等不同类型,其中监督学习主要包括回归和分类问题。在回归中,我们预测连续变量如房价;而在分类中,我们将数据分为离散类别如垃圾邮件检测。无监督学习则通过处理未标记数据进行聚类和降维,揭示数据内在结构。接着,我们深入讨论线性回归作为基础模型,其通过最佳拟合直线或超平面预测目标变量,优化目标在于最小化预测与真实值的误差。梯度下降法是优化线性回归参数的主要手段。逻辑回归则用于二分类问题,通过sigmoid函数预测事件概率,适用于多项逻辑回归以处理多分类问题。此外,我们探索神经网络和深度学习的概念,神经网络通过多层节点实现复杂非线性学习,应用于图像识别的CNN和文本处理的RNN。模型评估和选择中的交叉验证和正则化有助于防止过拟合和提升泛化能力。支持向量机(SVM)则通过寻找最优超平面实现不同类别间的最大化间隔,并通过核技巧处理非线性可分数据。这些基础知识为进一步学习和实践机器学习技术奠定了坚实基础,未来笔记将继续探索集成学习、强化学习和聚类算法等高级主题。
算法与数据结构
0
2024-09-19
机器学习资源
感谢大牛整理的机器学习资源:https://github.com/Flowerowl/Big_Data_Resources#大数据-数据挖掘
数据挖掘
7
2024-05-01
机器学习经典
McGrawHill出版社发行的.Tom著作的机器学习经典,涵盖数据挖掘通用算法。
数据挖掘
2
2024-05-25