流服务

当前话题为您枚举了最新的流服务。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

构建事件驱动架构:Apache Kafka 流服务设计模式
构建事件驱动架构:Apache Kafka 流服务设计模式 本书深入探讨构建事件驱动系统的核心概念和模式,重点关注 Apache Kafka 作为流服务的应用。您将学习如何: 设计和实现高性能、可扩展的事件驱动架构。 利用 Apache Kafka 的强大功能来构建可靠的流处理管道。 掌握事件驱动模式,例如事件溯源、CQRS 和 Saga,以解决分布式系统中的常见挑战。 探索实际案例研究,了解事件驱动架构如何在不同领域中应用。 通过本书,您将获得构建现代、响应式应用程序所需的知识和技能,这些应用程序能够实时响应不断变化的业务需求。
知识流环境
知识流环境:网络数据挖掘实验 PPT
spark流处理
Spark Streaming是Spark核心API的扩展之一,专门用于处理实时流数据,具备高吞吐量和容错能力。它支持从多种数据源获取数据,是流式计算中的重要工具。
光流法分割MATLAB代码的对象流项目
项目网页上提供了光流法分割MATLAB代码的详细实现,由Yi-Hsuan Tsai、Ming-Hsuan Yang和Michael J. Black在2016年IEEE计算机视觉和模式识别会议(CVPR)上发表。这篇论文描述了他们的MATLAB实现,测试于Ubuntu 14.04和MATLAB 2013b环境下。如果您希望使用他们的代码和模型进行研究,请遵循其安装说明并引用相关论文。
Apache Flink 流处理
Apache Flink 是一个开源框架,使您能够在数据到达时处理流数据,例如用户交互、传感器数据和机器日志。 通过本实用指南,您将学习如何使用 Apache Flink 的流处理 API 来实现、持续运行和维护实际应用程序。 Flink 的创建者之一 Fabian Hueske 和 Flink 图处理 API (Gelly) 的核心贡献者 Vasia Kalavri 解释了并行流处理的基本概念,并向您展示了流分析与传统批处理的区别。
Storm实时流处理流程
Storm的工作流程可以概括为以下四个步骤: 用户将Topology提交到Storm集群。 Nimbus负责将任务分配给Supervisor,并将分配信息写入Zookeeper。 Supervisor从Zookeeper获取分配的任务,并启动Worker进程来处理任务。 Worker进程负责执行具体的任务。
Oozie 工作流引擎
Oozie 是 Cloudera 公司为 Apache 开源的工作流引擎框架,用于在 Hadoop 平台上管理和调度作业。
KDDCup99 流数据
KDDCup99 竞赛的流数据,以 .arff 文件格式提供。数据包含类别标签,并经过预处理。
数据流驱动设计
数据流驱动设计 数据流驱动设计是一种软件设计方法,它以数据在系统中的流动和转换过程为核心。这种方法强调识别和定义数据流,并根据数据流的特点来构建系统架构和模块划分。 在数据流驱动设计中,系统被分解为一系列相互连接的处理单元,每个单元负责对数据进行特定的操作或转换。数据在这些单元之间流动,最终生成系统所需的输出。 这种设计方法特别适用于处理大量数据的系统,例如数据处理流水线、实时数据分析系统等。其优势在于能够清晰地展现数据的流动过程,方便理解和维护系统逻辑,同时也易于实现并行处理和优化性能。
Matlab 雨流计数法
利用 Matlab 实施雨流计数法,轻松处理载荷数据。