LIDAR

当前话题为您枚举了最新的 LIDAR。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于MATLAB的TOPSCAN算法应用于LIDAR点云数据滤波
研究了如何利用MATLAB中的TOPSCAN算法对LIDAR点云数据进行滤波处理。该算法首先将点云数据分块,然后根据每个块内的点云进行最小二乘曲面拟合滤波,同时动态调整窗口大小以优化滤波效果。
使用区域增长算法进行图像修复和LIDAR车辆检测与车道变更检测
贡献者梅丽莎·陈(Melissa Chen)、高乐中(Lezhong Gao)、凯文·夸奇(Kevin Quach)、韦拜·斯里瓦斯塔瓦(Vaibhav Srivastava)使用区域增长聚类算法对3D点进行聚类,以过滤出具有宽度和深度的聚类。在360度全景图上,利用深度神经网络的预测框对聚类点进行投影,并选择最可能的框进行跟踪。
Matlab集成C代码自动校准非重复扫描固态LiDAR和摄像头系统
Matlab集成的C代码用于自动校准非重复扫描固态LiDAR和摄像头系统。该系统已在Ubuntu 16.04和Ubuntu 18.04上进行过测试,依赖ROS 3.2.5、PCL 1.8、Python 2.X/3.X、OpenCV Python(版本>=4.0)、科学计算库Scikit-Learn、Transforms3D、PyYAML和Mayavi(可选,用于调试和可视化)。安装步骤包括下载存储库及其子模块,编译并安装normal-diff分段扩展,以及使用ROS工具简化校准数据收集过程。
SVM Prediction MATLAB Code for Fruit Detection in 3D LiDAR Point Clouds Using Velodyne VLP-16
This project demonstrates a MATLAB implementation for fruit detection in 3D LiDAR point clouds using the Velodyne VLP-16 LiDAR sensor (Velodyne LIDAR Inc., San Jose, CA, USA). The dataset contains 3D point clouds of 11 Fuji apple trees and corresponding fruit position annotations. The implementation uses a Support Vector Machine (SVM) classifier for fruit detection. Setup and Requirements Clone the Code: To begin, clone the repository using the command:git clone https://github.com/GRAP-UdL-AT/fruit_detection_in_LiDAR_pointClouds.git Data Preparation: Create a folder named “data” in the directory where the code is saved. Inside this folder, store the ground truth data and point cloud data in subdirectories named “AllTrees_Groundtruth” and “AllTrees_pcloud”, respectively. Prerequisites: Ensure you have the following installed in MATLAB: MATLAB R2018 (other versions not tested) Computer Vision System Toolbox Statistics and Machine Learning Toolbox Dataset: The LFuji-air dataset is stored in the /data folder. This dataset provides the necessary LiDAR data for training and evaluation. Cross-validation: Perform cross-validation to evaluate the performance of the model in detecting fruit within the LiDAR point clouds. Notes The implementation is optimized for MATLAB R2018 and tested specifically on this version. The project utilizes a dataset that includes both ground truth fruit positions and point cloud data for training the detection model.