LIDAR
当前话题为您枚举了最新的 LIDAR。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于MATLAB的TOPSCAN算法应用于LIDAR点云数据滤波
研究了如何利用MATLAB中的TOPSCAN算法对LIDAR点云数据进行滤波处理。该算法首先将点云数据分块,然后根据每个块内的点云进行最小二乘曲面拟合滤波,同时动态调整窗口大小以优化滤波效果。
算法与数据结构
8
2024-08-17
使用区域增长算法进行图像修复和LIDAR车辆检测与车道变更检测
贡献者梅丽莎·陈(Melissa Chen)、高乐中(Lezhong Gao)、凯文·夸奇(Kevin Quach)、韦拜·斯里瓦斯塔瓦(Vaibhav Srivastava)使用区域增长聚类算法对3D点进行聚类,以过滤出具有宽度和深度的聚类。在360度全景图上,利用深度神经网络的预测框对聚类点进行投影,并选择最可能的框进行跟踪。
Matlab
7
2024-08-19
Matlab集成C代码自动校准非重复扫描固态LiDAR和摄像头系统
Matlab集成的C代码用于自动校准非重复扫描固态LiDAR和摄像头系统。该系统已在Ubuntu 16.04和Ubuntu 18.04上进行过测试,依赖ROS 3.2.5、PCL 1.8、Python 2.X/3.X、OpenCV Python(版本>=4.0)、科学计算库Scikit-Learn、Transforms3D、PyYAML和Mayavi(可选,用于调试和可视化)。安装步骤包括下载存储库及其子模块,编译并安装normal-diff分段扩展,以及使用ROS工具简化校准数据收集过程。
Matlab
6
2024-08-28
SVM Prediction MATLAB Code for Fruit Detection in 3D LiDAR Point Clouds Using Velodyne VLP-16
This project demonstrates a MATLAB implementation for fruit detection in 3D LiDAR point clouds using the Velodyne VLP-16 LiDAR sensor (Velodyne LIDAR Inc., San Jose, CA, USA). The dataset contains 3D point clouds of 11 Fuji apple trees and corresponding fruit position annotations. The implementation
Matlab
6
2024-11-06