造纸废水处理

当前话题为您枚举了最新的造纸废水处理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于遗传算法与BP网络的造纸废水处理预测研究
这篇论文探讨了如何利用遗传算法与BP神经网络来预测造纸废水处理过程中的效果。这是一个优秀的BP应用案例,值得学术界深入研究。
造纸过程能耗异常诊断研究
基于数据驱动的造纸过程能耗异常诊断,分析过程数据模式,构建知识库,提升监测与异常诊断能力,指导企业精益运营。
优化污水处理中氨氮预测的改进K-means算法
技术进步引领下,针对RBF神经网络参数难以确定的问题,提出了一种改进K-means算法,用于优化污水处理过程中氨氮预测的精度。首先,通过计算样本点的密度值,消除孤立点和噪声对K-means算法的影响;其次,利用减法聚类算法初始化聚类中心,并确定数量,进一步优化了RBF神经网络结构。最后,实际预测实验表明,该算法具有较强的预测能力。
Matlab BOPS批处理OpenSim处理脚本
BOPS(批处理 OpenSim 处理脚本)执行常见 OpenSim 程序(逆运动学 -IK,逆动力学 -ID,肌肉分析 -MA,静态优化 -SO 和 关节反应分析 -JRA)的批处理,并将输出、日志记录信息、设置文件和曲线图存储在文件夹的有序结构。我们使用 OpenSim API 实现了 BOPS,这些 API 通过设置文件接收以下信息:(i)每个标记的名称和权重(IK);(ii)外部负载(ID);(iii)感兴趣的肌肉和力矩臂(MA);(iv)静态优化条件和肌肉执行器负载(SO);(v)感兴趣的关节(JRA)。用户负责为其数据定义适当的配置,但我们已为每个安装文件提供多个模板,以加快自定义。可使用 MATLAB 图形用户界面(GUI)来简化过程的执行。在选择安装文件时,不限制使用 GUI。用户还可以输入:(i)执行的 OpenSim 程序;(ii)要处理的试验;(iii)用于仿真的 OpenSim 模型;(iv)滤波的截止频率;(v)要绘制的输出变量和 x 轴标签。 BOPS 将其输出存储在自动创建的文件夹中。这些文件夹完美地集成在 MOtoNMS 软件中。
数字图像处理综述-图像处理研究部分
数字图像处理是利用计算机进行去噪、增强、恢复、分割和特征提取等图像处理方法和技术的概述。
spark流处理
Spark Streaming是Spark核心API的扩展之一,专门用于处理实时流数据,具备高吞吐量和容错能力。它支持从多种数据源获取数据,是流式计算中的重要工具。
Matlab数据处理磁引力数据处理代码
Matlab数据处理文件夹“ process_data”包含用于执行所有处理的代码“ process_data.m”。文件夹“ plot”包含克里斯汀·鲍威尔(Christine Powell)编写并修改的宏“ plot_cen_maggrav”。代码可用于下降趋势、上升延续、极点减小、垂直和水平导数。
阵列信号处理示例探索阵列信号处理的有趣应用
这些演示展示了DG Manolakis、VK Ingle和S. Kogon的著作中第11章的数值示例,涵盖了统计和自适应信号处理的频谱估计、信号建模、自适应滤波和阵列处理。内容包括空间匹配滤波器、最优波束成形器、样本矩阵求逆(SMI)和相关矩阵对角加载等基本概念。
处理实验数据矩阵基于Matlab的数据处理技巧
实验中,重复序列需要具有相同的实验条件。记录的数据一般存储在矩阵中,每个行向量表示不同实验序列的数据。因此,在绘制实验数据之前,必须对这种矩阵进行特定处理,以计算最大值、最小值或平均值。
数字语音处理例程-语音信号处理部分程序.rar
这些是张雪英数字语音处理书中的一些例程。