机器学习人员
当前话题为您枚举了最新的 机器学习人员。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
机器学习资源
感谢大牛整理的机器学习资源:https://github.com/Flowerowl/Big_Data_Resources#大数据-数据挖掘
数据挖掘
15
2024-05-01
机器学习经典
McGrawHill出版社发行的.Tom著作的机器学习经典,涵盖数据挖掘通用算法。
数据挖掘
10
2024-05-25
矩阵学习与机器学习衔接
吴恩达矩阵学习是针对机器学习所设计的,可以帮助你更好地理解线性代数在机器学习中的应用,进而理解更复杂的机器学习概念。
算法与数据结构
10
2024-05-01
Matlab无法运行代码问题 - 自制机器学习国内机器学习
对于此存储库的Octave/MatLab版本,请检查项目。该存储库包含用Python实现的流行机器学习算法的示例,并在后面解释了数学原理。每种算法都有交互式的Jupyter Notebook演示,使您可以使用训练数据、算法配置并立即在浏览器中查看结果、图表和预测。在大多数情况下,解释是基于Andrew Ng的。这个仓库的目的不是为了实现机器使用第三方库“单行”,而是练从头开始执行这些算法和获得更好的每种算法背后的数学理解学习算法。这就是为什么所有算法实现都称为“自制”而不是用于生产的原因。
Matlab
9
2024-07-23
机器学习算法实战
算法实战:探索机器学习核心
本篇带您深入浅出地了解机器学习常见算法,涵盖监督学习、无监督学习和强化学习三大类别,并结合实际案例,助您快速上手算法应用。
### 监督学习
线性回归: 预测连续目标变量,例如房价预测。
逻辑回归: 解决二分类问题,例如判断邮件是否为垃圾邮件。
决策树: 构建树形结构进行分类或回归预测,例如客户流失预警。
### 无监督学习
聚类分析: 将数据分组到不同的簇中,例如客户细分。
主成分分析: 降低数据维度,提取主要特征,例如图像压缩。
### 强化学习
Q-learning: 通过试错学习最优策略,例如游戏 AI。
SARSA: 基于当前策略
算法与数据结构
11
2024-05-25
机器学习常用开源数据集及数据挖掘、机器学习、深度学习的区别
机器学习常用开源数据集
在进行机器学习项目时,使用真实数据至关重要。许多开源数据集涵盖了多个领域,为机器学习研究和应用提供了丰富的资源。
寻找开源数据集的途径:
数据仓库平台: 许多平台专门收集和整理开源数据集,例如 Google Dataset Search、Kaggle Datasets、UCI Machine Learning Repository 等。
相关领域网站: 许多研究机构或组织会发布自己领域内的开源数据集,例如医疗、金融、图像识别等。
数据挖掘、机器学习、深度学习的区别
数据挖掘 侧重于从数据中发现模式和规律,并利用算法模型进行分析。其核心目标是揭示数据变量之间的关系,
数据挖掘
9
2024-07-01
机器学习的部分学习笔记改写
机器学习的一些学习记录
算法与数据结构
10
2024-07-15
机器学习与Spark指南
此指南提供机器学习与Spark的清晰介绍,涵盖基础概念、技术和实用示例。
spark
9
2024-05-15
数据挖掘机器学习
使用 Spark、PySpark、Spark 管道、Jupyter Notebook 学习数据挖掘机器学习
数据挖掘
11
2024-05-15
Apache Spark 机器学习 PDF
本资源提供 Apache Spark 机器学习 PDF 文档,供您免费学习和参考。
spark
11
2024-05-13