共置模式挖掘
当前话题为您枚举了最新的共置模式挖掘。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
序列模式挖掘研究综述
对序列模式挖掘的研究进行概述,涵盖其相关概念、常用方法、代表性算法及其优缺点分析,并展望未来发展方向,为研究者改进现有算法和开发新算法提供参考。
数据挖掘
2
2024-05-16
挖掘影响目标活动模式
通过分析不平衡数据中的影响目标活动模式,有助于找出重要指标。
数据挖掘
2
2024-05-20
序列模式挖掘隐私保护研究
针对序列模式挖掘中的隐私保护问题,研究人员提出了名为CLDSA(当前最少序列删除算法)的创新算法。
该算法通过对候选序列进行加权,并在删除过程中动态更新权重,以贪心算法获得局部最优解,从而最大限度地减少对原始数据库的修改。
实验结果验证了CLDSA算法在隐藏敏感序列方面优于现有方法,实现了更有效的隐私保护。
数据挖掘
5
2024-04-30
PrefixSpan:GSP 序列模式挖掘算法
基于优先级原则的序列模式挖掘算法
通过产生并检测候选序列的方式
扫描序列数据库,得到长度为 1 的序列模式
根据种子集生成候选序列模式,计算支持数
迭代上述步骤,直到没有新序列模式或候选序列模式产生
算法与数据结构
3
2024-05-15
频繁模式挖掘算法:观测研究
频繁模式挖掘在数据挖掘中扮演着关键角色,存在多种算法。本研究探索了模式连续挖掘中算法相关的主要问题和挑战。
数据挖掘
5
2024-05-25
序列模式-数据挖掘算法解析
序列模式t是指在多个数据序列中发现共同的行为模式。 t通过时间序列搜索出重复发生概率较高的模式,强调时间序列的影响。 例如,在所有购买了激光打印机的人中,半年后80%的人再购买新硒鼓,20%的人用旧硒鼓装碳粉; 在所有购买了彩色电视机的人中,有60%的人再购买VCD产品; 在时序模式中,需要找出在某个最短时间内出现比率一直高于某一最小百分比(阈值)的规则。
数据挖掘
2
2024-07-15
序列模式-数据挖掘算法解析
序列模式t是指在多个数据序列中发现共同的行为模式。t通过时间序列搜索出重复发生概率较高的模式。这里特别强调时间序列的影响。例如,在所有购买了激光打印机的人中,半年后80%的人再购买新硒鼓,20%的人用旧硒鼓装碳粉;在所有购买了彩色电视机的人中,有60%的人再购买VCD产品;在时序模式中,需要找出在某个最短时间内出现比率一直高于某一最小百分比(阈值)的规则。
数据挖掘
0
2024-10-17
面向高效数据挖掘的直接判别模式挖掘
DDPMine 运用 branch-and-bound 搜索策略,无需生成完整模式集,直接挖掘出区别性模式。该方法摒弃了从海量数据中选取最优模式的传统做法,引入以特征为中心的策略,通过不断减少训练实例,在逐步缩减的 FP 树上依次生成区别性模式。
数据挖掘
2
2024-05-27
深入探究数据模式:图挖掘与序列挖掘
数据挖掘算法:揭示隐藏关联
数据挖掘领域涵盖多种强大的算法,用于揭示数据中隐藏的模式和关系。其中,图挖掘和序列挖掘是两种特别有效的技术,可应用于各种场景。
图挖掘
图挖掘算法分析数据点之间的复杂关系,这些数据点通常表示为节点和边。此类算法可用于:
社交网络分析:识别社区、影响者和异常行为。
推荐系统:根据用户之间的关系和交互推荐产品或服务。
欺诈检测:发现异常交易模式和潜在的欺诈行为。
序列挖掘
序列挖掘算法分析数据点随时间推移发生的顺序模式。此类算法可用于:
客户行为分析:理解客户旅程并预测未来行为。
生物信息学:识别 DNA 或蛋白质序列中的模式。
预测性维护:根据设备的历史性能数据预测潜在故障。
图挖掘和序列挖掘算法为深入理解数据提供了强大的工具,并能够应用于广泛的领域,以提取有价值的见解。
数据挖掘
5
2024-04-30
提高垂直模式类高效用模式挖掘算法的效率
高效用模式挖掘领域复杂性使得提升其算法效率成为数据挖掘的重点研究。HUPminer算法是基于垂直模式类的典型方法,有效减少效用列表数量,但其对项集划分的需求仍占用大量空间。为解决这一问题,改进的IHUI-miner算法在考虑1扩展集中项集关联性的基础上,显著减少效用列表的个数。实验验证显示,IHUI-miner在时间效率和效用列表减少方面均优于现有算法HUP-miner与HUI-miner。
数据挖掘
3
2024-07-16