CT图像处理

当前话题为您枚举了最新的 CT图像处理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

CT图像处理代码从CT数据提取2D图像并合成X射线图像
使用Visual Studio 2012平台上的OpenCV3.0库,本程序能从3D CT数据中提取任意角度和位置的2D切片图像,并将这些图像合成类似X射线的2D图像。安装OpenCV库的详细步骤包括下载和设置环境变量,然后在Visual Studio中创建新项目并配置解决方案平台,选择x86或x64平台进行设置。项目属性需设置Opencv包含目录和库目录,以及添加Opencv库依赖项。
MATLAB实现CT图像重建程序
MATLAB编写的CT图像重建程序提供了一种高效的图像处理方案。此程序不仅仅是MATLAB代码,还包含了详细的实验报告模板,帮助用户深入理解和应用。使用这一程序,研究人员和工程师能够快速重建CT扫描图像,以获得精确的医学图像数据。
CT图像重建软件包用于执行CT图像重建任务的功能集-Matlab开发
这个软件包包括多种执行CT图像重建任务的函数,如Radon变换、简单反投影、空间域中的卷积滤波反投影、2D傅立叶变换滤波反投影,以及中心切片定理滤波反投影。其中的myCtReconstruction函数提供即开即用的功能,并使用Matlab的Shepp Logan Phantom进行演示。用户也可以通过参数运行myCtReconstruction函数来执行自定义数据集上的图像重建。
使用MATLAB进行CT图像肾脏分割初探
MATLAB可用于初学者对CT图像中的肾脏部分进行提取和分割。这为初学者提供了了解肾脏分割基本信息的机会。
CT扫描图像重建算法比较与优化
使用Matlab系统函数调用投影算法[R, xp] = radon(I, theta),实现直接反投影和滤波反投影两种不同插值方法的比较。脚本展示了不同投影数量对重建效果的影响,适合CT重建算法初学者学习调试。该项目源于CMU的课程作业,提供了包括源码和文档在内的完整内容。
MATLAB脑部CT和MRI图像合成模型代码
这是用于脑部CT和MRI图像基于模型合成的MATLAB代码。通过此代码,可以根据给定的MR(T1w、T2w、PDw)和CT扫描,合成缺失的模态。代码基于SPM12软件包(及其MB工具箱),无需先行处理,完全无监督训练。如果您认为此代码有用,请在参考部分引用出处。
超声CT图像重建GAN模型的Matlab代码
生成对抗网络(GAN)在超声CT图像重建中具有重要应用价值。这种模型能够有效学习和重建医学图像,为医疗影像处理领域带来了新的突破。GAN模型的引入,标志着超声CT图像重建技术迈向了一个新的阶段。
Matlab下CT和MR图像融合的研究与实现
研究了在Matlab环境下如何实现CT和MR图像的融合。研究包括图像的分解、融合系数的应用以及重构和显示过程。
数字图像处理综述-图像处理研究部分
数字图像处理是利用计算机进行去噪、增强、恢复、分割和特征提取等图像处理方法和技术的概述。
MATLAB代码优化CT和MR医学图像多模态融合技术探索
采用小波变换法,结合不同的融合规则,将CT和MR医学图像的近似系数和细节系数进行有效整合,实现多模态医学图像的精准融合。该MATLAB代码优化提升了融合效果和计算效率。