区间数据

当前话题为您枚举了最新的区间数据。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

区间数据离散化方法
该方法基于相似度阈值和关联度,实现区间数据离散化,提升了算法性能,经多组数据验证,效果显著。
基于支持向量机的区间数回归模型建模方法
分析了现有的精确数输入和区间数输出回归算法存在的问题,并提出了基于支持向量机的区间数回归建模方法。该方法将支持向量机从精确数回归推广到区间数回归建模,展示出在小样本训练集下良好的泛化性能,有效避免了现有算法中可能出现的下界大于上界的问题。以连续退火生产过程中冷却段出口带钢温度预测为例,仿真结果表明该算法的有效性。
区间实根求任意函数在任意区间的所有实根-MATLAB开发
本例程利用分析方法在给定区间内查找任意函数的所有实根。通过使用Chebyshev多项式逼近函数,并采用JP Boyd提出的高效分析方法来精确定位这些根。用户需将欲求根的函数以MATLAB匿名函数形式提供,例如:FindRealRoots(@(x) besselj(1,x), a, b, n),其中n为Chebyshev展开的元素数,在区间[a, b]内计算函数besselj(1,x)的所有实根。程序运行后将显示计算所需时间,并给出原始函数图像及其在指定区间内的近似值。若结果不一致,建议增大'n'的值再次尝试。
空间数据挖掘综述
空间数据挖掘从空间数据库中提取知识和模式,用于理解空间数据及其相互关系。它基于数据挖掘技术,但考虑到空间数据的复杂性和专业性,需要独特的理论、方法和应用。
Oracle数据库管理中的区间扩展维护(初级)
区间是由数据库块组成的一组数据,段分配的一部分。第一个分配的区间称为初始区间,随后的分配称为增量区间。当段创建、扩展、修改、清空、自动调整大小(仅适用于回滚段)或删除时,会涉及区间的分配与释放。在一个段中可以存在多个区间,它们为数据预留较大的存储空间。在Oracle的管理中,减少区间数量有助于提高性能,因为减少了磁头移动的需求。但在某些情况下,需要在多个数据文件或设备上分布段,并适当增加区间数,这也能带来显著好处。
Z值检验与置信区间
在假设检验中,Z值检验是一种常用的统计方法。Z值的取值范围决定了假设检验的接受域和拒绝域。例如,在90%的置信水平下(α=0.1),Z值的接受域为 -1.64 到 1.64 之间。
重新缩放[0, 1]区间内矩阵列
输入矩阵X大小为[nsamples, ncols],输出矩阵Y中每一列的值都已重新缩放至区间[0, 1]内。示例:X = randint(100, 4);Y = rescale(X);display(min(Y));display(max(Y));
空间数据分析工具
空间探索分析,用于自相关性分析。
空间数据挖掘与 CUDA
空间数据挖掘 空间数据与占据特定空间的对象相关,存储于空间数据库中,并通过空间数据类型和空间关系进行管理。其包含拓扑和距离信息,并利用空间索引进行组织和查询。空间数据的独特性为空间数据库的知识发现带来了挑战和机遇。 空间数据库的知识发现,也称为空间数据挖掘,是从空间数据库中提取隐含知识、未直接存储的空间关系以及空间模式的过程。空间数据挖掘技术,尤其在空间数据理解、空间与非空间数据关系发现、空间知识库构建、空间数据库查询优化和数据组织方面,在 GIS、遥感、图像数据库、机器人运动等涉及空间数据的应用系统中具有广阔前景。 常用方法 统计分析方法 统计分析是目前空间数据分析的常用方法,适用于处理数值型数据。它拥有大量成熟算法,可用于空间现象的建模和分析。 然而,空间统计分析也存在一些缺陷: * 空间分布数据的统计独立性假设通常不切实际,因为空间邻域之间存在相互关系。 * 不适用于处理非数值型数据,例如空间对象的名称和定名数据类型。 * 通常需要领域专家和统计知识,仅适合专业人士使用。 * 当数据不完整或不充分时,结果缺乏实际意义。 * 计算成本高昂。 为了克服这些缺点,需要新的数据挖掘方法。 基于概括的方法 (内容省略)
Weibull数据的逐阶区间删失统计分析
本研究探讨了逐阶区间删失Weibull数据的参数估计和最优随机删失计划。采用极大似然估计方法获取参数的估计值,并通过最小方差准则提出了局部和全局最优删失计划。文章中还包含一个生物医学应用的实例,以及通过Mont-Carlo数值模拟方法验证所提方法的有效性。