k近邻
当前话题为您枚举了最新的k近邻。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
数据科学WiFi定位系统的k近邻与加权k近邻位置预测
案例包括R语言程序调试、开发文本数据处理与挖掘的函数、各种可视化图集(具体可参考博客中展示的一部分),k近邻与加权k近邻,以及最终的模型预测。数据量为140多万记录,针对不同的预测变量进行了汇总。自己编写了针对k近邻与加权k近邻的十折交叉验证程序,并进行了可视化展示。整个项目过程全程没有使用R语言中现有的包,所有代码都是独立编写的。对于想要提升R编程能力的同学,这个项目将是一个绝佳的选择。谢谢大家支持!
数据挖掘
0
2024-10-27
K近邻分类算法实现代码
K近邻(K-Nearest Neighbors,简称KNN)是一种机器学习算法,被广泛应用于分类和回归问题。该算法基于实例学习,通过找出训练集中与新样本最接近的K个样本,利用它们的类别进行预测。详细介绍了KNN算法的实现步骤:数据预处理,距离计算,最近邻选择,类别决策以及评估与优化。此外,提供了K-近邻法分类代码的下载链接,可以帮助读者理解并实现该算法。
数据挖掘
0
2024-09-23
探究Matlab语言中的K近邻算法
K近邻算法, 简称KNN, 是一种常用的机器学习算法, 在Matlab语言中有着广泛的应用. KNN算法尤其适用于解决分类问题, 通过分析与目标数据点最接近的K个邻居的类别, 来预测目标数据点的类别.
算法与数据结构
3
2024-05-20
基于HBase和SimHash的大数据K-近邻算法优化
大数据K-近邻(K-NN)计算复杂度高,为解决此问题,提出一种基于HBase和SimHash的大数据K-近邻分类算法。该算法利用SimHash算法将大数据集映射到Hamming空间,得到哈希签名值集合。然后,将样例的行键与值的二元对存储到HBase数据库中,行键为样例的哈希签名值,值为样例的类别。对于测试样例,以其哈希签名值作为行键,从HBase数据库中获取所有样例的值,通过对这些值进行多数投票,得到测试样例的类别。与基于MapReduce的K-NN和基于Spark的K-NN相比,该算法在运行时间和测试精度方面均有优势。实验结果表明,在保持分类能力的前提下,该算法的运行时间远低于其他两种方法。
Hbase
5
2024-05-12
基于Python的面部表情识别代码-K近邻分类器知识网络
基于Python的面部表情识别代码,采用K近邻分类器进行数据集验证。实现了10倍交叉验证和留一法交叉验证,计算分类精度。运行环境要求Python 3.5+,需要的Python库包括numpy、scipy、xlrd和sklearn。具体实现步骤包括使用K近邻算法进行分类,并在不同验证方式下评估分类器的性能。
Matlab
2
2024-07-31
改进K-近邻法的文本分类算法分析与优化
文本自动分类技术是数据挖掘的重要分支,K-近邻法作为常见的文本分类算法之一,其存在一些局限性。基于对K-近邻法的分析,针对其不足提出了改进方案,在保证判定函数条件的前提下,优化了算法,避免了K值的搜索过程,从而降低了计算复杂性并提升了效率。实验证明,改进后的K-近邻法在文本分类任务中具有显著的效果。
数据挖掘
2
2024-08-03
使用K近邻算法进行葡萄酒分类的机器学习研究
在机器学习中,K近邻算法被广泛应用于葡萄酒分类任务。该算法通过比较葡萄酒样本的特征,将其归类到不同的品种中。K近邻算法的研究和应用为葡萄酒分类提供了一种高效且可靠的解决方案。
算法与数据结构
0
2024-08-14
k最近邻(kNN)分类器多类分类中的应用-matlab开发
功能1. kNNeighbors.predict() 2. kNNeighbors.find()描述1.返回一个或多个测试实例的估计标签。 2.返回k个最接近的训练实例的索引及其距离。 使用鸢尾花数据集的示例加载fisheriris X =测量值; Y =物种; Xnew = [min(X);mean(X);max(X)]; k = 5;公制= '欧几里得'; mdl = kNNeighbors(k,metric); mdl = mdl.fit(X,Y); Ypred = mdl.predict(Xnew) Ypred = 'setosa' '杂色' '弗吉尼亚' Ynew = {'versicolor';'virginica'};准确率=accuracy_score(Ypred,Ynew)精度= 0.6667
Matlab
3
2024-07-28
matlab集成c代码基于K-近邻算法的MNIST手写体识别实现
matlab集成c代码基于KNN算法实现了MNIST手写体数字识别。KNN全称K- Nearest Neighbors,即K个最近邻居。通过欧式距离选出测试样本最相似的邻居,多数邻居的标签确定样本的标签。为学习matlab的实践,详细介绍了数据集处理、图像二值化、训练样本的矩阵化过程。
Matlab
1
2024-08-03
快速近邻传播聚类算法
一种快速有效的聚类方法,利用Silhouette指标确定偏向参数,结合局部保持投影方法删除数据冗余信息,处理复杂和高维数据。实验表明,该算法优于传统近邻传播算法。
算法与数据结构
2
2024-04-30