一种快速有效的聚类方法,利用Silhouette指标确定偏向参数,结合局部保持投影方法删除数据冗余信息,处理复杂和高维数据。实验表明,该算法优于传统近邻传播算法。
快速近邻传播聚类算法
相关推荐
基于最近邻规则的聚类算法实验
最近邻规则聚类算法的实验要求是编写一个使用欧式距离度量的聚类算法,可以设置阈值。通过在二维特征空间中验证,使用10个样本数据(如:x1 = (0,0),x2 = (3,8),x3 = (2,2),等)。这些实验探索最近邻规则在聚类过程中的应用。
Matlab
0
2024-08-23
仿射传播聚类算法及自适应优化
仿射传播聚类算法 (Affinity Propagation Clustering, AP) 是一种高效的聚类算法,特别适用于处理大规模数据集和众多类别的情况。
算法原理:
AP算法通过数据点之间传递信息来识别数据中的聚类中心 (exemplars)。每个数据点都向其他数据点发送信息,表明其适合作为聚类中心的程度,并接收来自其他数据点的类似信息。通过迭代传递信息,算法最终确定一组代表性的聚类中心,并将其他数据点分配到相应的聚类中。
挑战与改进:
传统的AP算法在实际应用中面临两个挑战:
偏向参数难以确定: 算法的性能受偏向参数的影响,而最佳参数值难以确定。
震荡问题: 算法可能陷入震荡状态,无法收敛到稳定的聚类结果。
为了解决这些问题,研究者提出了自适应仿射传播聚类算法 (adAP),该算法通过以下策略优化AP算法:
自适应扫描: 扫描偏向参数空间,寻找最佳聚类结果。
自适应阻尼: 调整阻尼因子以消除震荡。
自适应逃离: 降低偏好参数值以避免震荡。
资源:
相关代码和文档可从网上获取。
算法与数据结构
3
2024-05-20
基于密度树的网格快速聚类算法
该算法将网格原理应用于基于密度树的聚类算法,提高效率,降低I/O开销。
数据挖掘
4
2024-05-20
快速搜索查找聚类.pdf
该文献介绍了一种名为快速搜索查找的方法,用于高效进行数据聚类。
算法与数据结构
2
2024-07-19
聚类算法对比
该研究深入探讨了数据挖掘中的聚类算法,全面比较了各种算法的优点和局限性。
数据挖掘
4
2024-05-01
选择聚类算法
探索聚类算法以有效提取 Web 数据洞察力。
数据挖掘
3
2024-05-25
基于快速聚类的髙维数据特征选择算法
这篇论文探讨了一种针对高维数据的特征选择算法,该算法利用快速聚类技术提高效率,为数据挖掘领域的学者和实践者提供了有价值的参考。
数据挖掘
2
2024-05-25
K均值聚类算法
这份文档包含了用于图像分割的K均值聚类算法的Matlab程序代码。
算法与数据结构
2
2024-07-17
数据聚类算法概述
数据挖掘是从海量数据中提取有价值信息的过程,而聚类算法是其核心方法之一。聚类通过将数据对象根据相似性分组形成不同的簇,使得同一簇内的对象相似度高,而不同簇的对象相异度大。深入探讨了四种常见的聚类算法:K-means、自组织映射(SOM)、主成分分析(PCA)和层次聚类(HC)。K-means通过迭代寻找数据点的中心来实现聚类;SOM通过竞争学习形成有序的二维“地图”;PCA通过线性变换降低数据维度;HC通过构建树形结构表示数据点间的相似性。每种算法都有其独特的适用场景和局限性。
数据挖掘
2
2024-07-18