中文本体构建
当前话题为您枚举了最新的中文本体构建。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于文本挖掘的领域本体构建方法探索——教学设计领域本体建设案例研究
随着信息技术的迅速发展,知识管理在教育技术学中变得尤为重要。领域本体作为知识管理的有效工具,在诸多教育技术应用中扮演关键角色。然而,传统的手工构建方式已无法满足知识更新速度的需求。因此,研究者们提出了一种结合文本挖掘技术的领域本体半自动构建方法,以提高效率和质量。该方法包括文献选取、文本预处理、概念关系标注、形式化表示与存储等步骤,并结合多种关键技术,如信息提取、中文分词、概念关联关系发现等。研究以教学设计领域本体建设为案例,验证方法的有效性。
数据挖掘
0
2024-10-21
利用Protege建立中文人物关系本体
使用Protege 5.2版本的本体编辑工具,创建一个中文人物关系的本体示例,能够帮助理解和掌握本体构建的方法和技巧。通过这个例子,可以清晰地看到不同人物之间的关系和关联,适用于本体学习和实践。
kafka
3
2024-07-12
研究报告领域本体构建的新方法
为了解决文本数据挖掘等尚未成熟的领域中本体构建的挑战,我们首先创建了领域本体的基本概念词集。利用样本库优化这些基本概念,并构建它们的上下文关系,筛选出相关的名词,并且设计了一种算法来确认同义词、近义词和反义词。这一方法已经被证实在实践中具有可行性。
数据挖掘
0
2024-08-15
构建文本分析模型tinyxml指南
12.8操作步骤第一步:使用“Nominal to Text”操作符,将属性att2的数据类型转换为文本。这一步骤是为了告知RapidMiner我们需要处理的是文本数据,详见图12.3。接下来,连接“Process Documents from Data”操作符,将其输入端与“Nominal to Text”连接,输出端“exa”和“wor”连接至结果端,详见图12.4。双击“Process Documents from Data”操作符,进入其设置界面,添加默认参数配置的“Tokenize”分词器操作符,详见图12.5。
算法与数据结构
0
2024-10-15
中文文本挖掘及其模型研究
探讨文本挖掘的应用领域,专注于中文语境下的研究,使用R语言进行数据分析,结合语料库和统计模型进行深入探讨。
SQLServer
1
2024-07-28
构建大规模文本挖掘系统基于网格计算
详细阐述了基于网格计算构建大规模文本挖掘系统的重要性和实施方法。文本数据挖掘作为数据密集型、计算密集型和分布式协作的一般特点,在企业和政府组织中具有重要的应用前景。
数据挖掘
2
2024-07-21
大连理工大学中文情感词汇本体库
该资源适用于中文文本情感分析与分类任务,内含输入输出数据。
算法与数据结构
3
2024-05-23
本体与知识库资源
精选的本体和知识库资源集合,用于知识管理研究与应用。
数据挖掘
4
2024-05-15
中文情感文本标注语料库
精选2万多条标注好的中文情感分类语料,可用于模型训练和情感分析练习。
spark
4
2024-05-13
深度学习文本分类系统构建与性能验证
基于深度学习构建文本分类系统,提出系统架构和关键技术,通过验证比对传统模型、TextCNN、CNN+LSTM等模型,提升分类准确率和特征提取能力。
数据挖掘
4
2024-05-01