多类别分类
当前话题为您枚举了最新的 多类别分类。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
利用混淆矩阵分析多类别分类问题
混淆矩阵直观展示了模型在多类别分类问题上的预测效果,揭示了每个类别样本被正确分类和错误分类的具体情况。
Matlab
3
2024-05-23
职位类别多级分类表CSV下载
这是一个详尽的职位类别多级分类表,类似智联招聘系统使用的三级分类结构。数据完备,以CSV格式提供,方便直接导入使用,总计包含2000个职位类别。
MySQL
1
2024-07-23
基于类别特性的 KNN 文本分类算法改进
论文提出了一种基于独立类别特性的改进 KNN 文本分类算法,该算法通过利用文本的不同类别特征来提高分类精度。
数据挖掘
4
2024-04-30
SPSS统计分析基础教程合并分类变量类别
在SPSS统计分析中,合并分类变量类别是一项常见的操作。例如,在处理成绩等级时,可以将优秀、良好和及格三个等级合并为一个“PASS”等级,将不及格转换为“NOPASS”。这种Recode过程有助于简化数据分析和结果解释。
统计分析
2
2024-07-17
k最近邻(kNN)分类器多类分类中的应用-matlab开发
功能1. kNNeighbors.predict() 2. kNNeighbors.find()描述1.返回一个或多个测试实例的估计标签。 2.返回k个最接近的训练实例的索引及其距离。 使用鸢尾花数据集的示例加载fisheriris X =测量值; Y =物种; Xnew = [min(X);mean(X);max(X)]; k = 5;公制= '欧几里得'; mdl = kNNeighbors(k,metric); mdl = mdl.fit(X,Y); Ypred = mdl.predict(Xnew) Ypred = 'setosa' '杂色' '弗吉尼亚' Ynew = {'versicolor';'virginica'};准确率=accuracy_score(Ypred,Ynew)精度= 0.6667
Matlab
3
2024-07-28
基于全局最小冗余的多视角分类方法研究综述
论文主题
本篇论文研究探讨了数据挖掘中的特征选择方法,重点提出了一种基于全局最小冗余的多视角分类技术,通过减少数据冗余提升分类准确率。
特征选择
特征选择是数据挖掘过程中的关键步骤,主要通过选取原始数据集中的特征子集以保留重要信息。研究表明,高维特征会导致维数灾难,不仅增加算法的复杂度,也影响分类准确率和效率。合理的特征选择不仅有助于降低模型复杂度,缩短训练时间,而且在提升分类效率上尤为显著。
多视角学习
多视角学习是将来自不同来源或视角的数据集成,增强对数据的理解。现实中的数据往往多角度,例如社会事件的多方报道。多视角分类方法通过整合这些视角数据,提取丰富信息,提升分类效果。
核心创新点
论文的创新点在于基于全局最小冗余的特征选择算法的提出。传统多视角分类方法忽略了视角间的冗余问题,而此算法通过在各个视角中消除冗余,实现信息最大化,显著提升了分类的准确率。
实验验证与结果
实验结果对比显示,基于全局最小冗余的特征选择算法在分类准确率上优于传统方法。这表明,通过合理的特征选择,能在多视角数据背景下显著增强分类性能。
研究意义
本研究不仅在多视角分类方面带来准确率的提升,还为高维数据处理提供了新的方法。该方法为复杂数据集设计高效模型提供了有效手段。
数据挖掘
0
2024-10-28
结核病复发类别预测
通过CHAID决策树分析,研究发现,DSSM结果和年龄是结核病患者复发治疗类别的独立预测指标。此模型可帮助卫生部门识别高复发风险患者,为其提供适当指导和干预措施。
数据挖掘
2
2024-05-26
类别 t 组件名称 t 功能
清洗类- 数据类型检查- 外键约束- 主键约束- 缺值处理- 空值域约束- 去重
转换类- Casewhent- 计数区间化- 字段类型转换- 数值区间化- 归一化- 属性交换- 关联规则数据生成- PCA 主成分分析
集成类- Delete 组件- Join 组件- Sort 组件- Where 组件
计算类- 计算生成列- Groupby 组件- 统计
抽样类- 分层抽样- 采样
集合类- 集合差- 集合交并
更新类- Update 组件- Insertupdate 组件
其他类- 数据集分割
数据挖掘
2
2024-05-26
数据挖掘分类器的二元类和多类比较
基于决策树、随机森林、支持向量机和k-最近邻等方法,探讨了二元类和多类数据挖掘分类技术,评估了分类器在训练-测试数据集上的准确性、F分数和灵敏度,分析了不同数据划分比例对分类器性能的影响。
数据挖掘
11
2024-05-16
数据挖掘中的知识类别总览
数据挖掘包含广义知识、关联知识、分类知识、预测知识及偏差知识等多种知识类型。
数据挖掘
0
2024-10-21