并行数据仓库

当前话题为您枚举了最新的 并行数据仓库。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

SQL Server 2008 R2 并行数据仓库技术概述
面对日益增长的海量数据,传统的对称多处理 (SMP) 架构已无法满足大型数据仓库和数据集市的需求。大规模并行处理 (MPP) 架构应运而生,为有效管理、存储和挖掘复杂数据提供了全新的解决方案。 Microsoft SQL Server 2008 R2 并行数据仓库 (PDW) 基于 MPP 技术构建,具有以下优势: 企业级性能和可扩展性 灵活选择硬件供应商 通过与 Microsoft 和第三方商业智能工具集成,提供全面的数据仓库解决方案
建行数据仓库基本架构与数据仓库模型介绍
建行数据仓库的基本架构涉及多个业务系统,包括ODS业务系统、AML、ALM、DCC网银个贷系统、信用证系统等。源表(sdata)通过中间层的pdata将数据传递至数据仓库中的CCDA和CAS等组件。核心银行业务处理系统(DCC)在数据仓库中的目标表大致分为三类:拉链表、时间切片表和当前表。这些表通过不同的物理字段来处理时间信息,特别是Start_Date、End_Date和Data_Dt等字段,能够有效地保留ETL过程中的时间维度数据。
银行数据仓库详细架构解析
作为企业级统一数据平台,哈尔滨银行的数据仓库扮演着至关重要的角色,为全行的管理、营销提供全面、一致、及时的数据支持。该数据仓库包含总体架构、物理架构、技术架构和数据架构四大组成部分。总体架构涵盖数据采集、数据整合、数据推送和通用展现四个平台;物理架构描述了系统的硬件布局和服务器配置;技术架构涉及前端应用技术和后端技术体系;数据架构则定义了数据源范围和分层管理。通过这些设计,哈尔滨银行致力于构建高效、可靠的数据支持平台。
数据仓库
全面的数据集合,涵盖广泛主题,满足您的各种需求。
数据仓库应用的范围-BI数据仓库培训
在数据仓库应用的范围中,IT人员为业务用户开发支持独立分析的系统,满足不同用户群体的需求。主要应用包括: 专业分析人员:为这些用户提供复杂分析工具和资源。 标准报表:针对常规数据分析需求,提供稳定的报表输出。 即席查询分析:为用户提供灵活、实时的查询分析功能,支持即时决策。 复杂分析:通过深度分析工具,帮助专业人员进行数据挖掘和高级分析。
数据仓库简介
数据仓库是主题导向、整合、相对稳定、反映历史变化的数据集合。它是一种“数据存储”体系结构,支持结构化、启发式、标准化查询、分析报告和决策支持。
数据仓库实例
该数据仓库实例可从网络中获取。
企业数据仓库
企业数据仓库是一个集成和存储企业各种数据的系统,用于支持决策制定和业务分析。它能够整合来自多个源头的数据,提供统一的数据视图和分析能力,帮助企业管理者更好地理解和利用数据资产。数据仓库的建设优化数据管理流程,提升信息利用效率。
数据仓库建模方法论的数据仓库总线
数据仓库总线方法论是数据仓库建模的核心理念之一,它通过定义一种结构化的方法来指导数据仓库的设计和构建过程。
优化数据仓库建设目标-Oracle数据仓库用户案例
优化数据仓库建设目标,建立一个统一的数据信息平台,集中存储客户资料和生产数据。运用先进的数据仓库技术和决策分析方法,为市场营销和客户服务提供有效支持,包括流失分析、欺诈检测、客户发展和客户关系管理。