数据理解
当前话题为您枚举了最新的数据理解。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
离散化与概念分层助力大数据理解
离散化将连续数据划分区间,用区间标号取代实际值;概念分层用高层概念替代低层属性值,概化数据。通过概念分层,数据细节虽有所损失,但概化后的数据更具意义和可解释性,同时节省存储空间和I/O开销。
Memcached
2
2024-05-15
交通大数据理论与应用探讨
随着信息通讯技术的飞速发展,各行各业产生了大量数据,促使数据挖掘这门新兴学科的兴起。数据挖掘从海量数据中挖掘出潜在的、先前未知的信息与关联,建立可支持决策的模型与工具,为预测性决策提供支持。在交通领域,大数据应用广泛,如利用手机信令数据分析城市人口与交通出行特征,优化交通规划;利用网约车数据优化路网流量与信号配时方案,提升交通控制效率;多源数据整合实现全面的交通管理与优化。
数据挖掘
0
2024-09-14
DS证据理论Matlab代码实现DS_fusion.m
DS证据理论Matlab代码实现:DS_fusion.m,这是一个简单的D-S证据理论融合代码,经过注释和优化,适用于独立的单一命题。附件包括m文件代码: function x=DS_fusion %功能:融合x,y两行向量% x,y的格式形如[m1 m2 m3, ... , mk, m] %要求m1 m2 m3 ...之间互相无交集% m可不为0,表示不确定度% m肯定是0 [nx,mx]=size; if 1~=nx disp; return; end [ny,my]=size; if 1~=ny disp; return; end if mx~=my disp; return; end temp=0; for i=1:mx-1 if i==mx-1 x=xy; %对全集的特殊处理else x=xy y*x; end temp=temp x; end for i=1:mx-1 x=x/temp; end x=0;复制代码
Matlab
0
2024-10-01
D-S证据理论算法的MATLAB实现及优化
D-S证据理论的MATLAB实现算法已经以函数形式编写,用户只需输入参数即可轻松使用。如果需要改进,仅需进行少量修改。
Matlab
0
2024-08-22
D-S证据理论算法的MATLAB编写及简易实现
D-S证据理论的MATLAB算法已被设计为简单的函数形式,用户只需输入相应参数即可使用。如果需要进一步改进,仅需进行少量修改。
Matlab
0
2024-08-27
数据库原理解析
王珊萨师煊合著的《数据库系统概论第四版》,由高等教育出版社出版,详细阐述了数据库系统的基本原理和应用。
SQLServer
2
2024-07-28
深入理解并行策略TDDL原理解析
并行策略的核心在于实现全并行处理,即所有分表同时执行分页查询,并在跨库Group By查询时实现库间并行。另外,多值IN查询经过业务测试显示,从230ms优化到30ms。此外,优化了UNION操作,将分库内多个分表合并为单一UNION请求,有效提升查询效率。总体而言,这些并行优化措施在有限资源下,显著提升查询效率。
MySQL
2
2024-07-17
MySQL数据库索引的理解
没有索引会导致MySQL数据库查询效率低下。为需要排序的每个字段创建独立的索引列表可以解决这一问题,这些列表不需要包含全部字段,只需排序字段和一个指向全表记录的指针。MySQL数据库包括主键、唯一索引、全文索引和普通索引四种类型。
MySQL
0
2024-07-31
深入理解数据采集技术
本书将详细介绍数据采集的全过程及相关技术,涵盖爬虫基础、HTTP协议、Requests库的应用、Xpath解析器、MongoDB与MySQL数据库比较、多线程爬虫实现、Scrapy及其扩展Scrapy-redis的使用,以及使用docker和nomad管理部署的技巧。目标是帮助读者深入理解数据采集的实际应用。
MySQL
0
2024-08-10
深入理解数据挖掘技术
数据挖掘是通过自动发现大数据中有用模式和知识的过程,涉及统计学、机器学习等多个领域,应用广泛于商业智能、科学研究和金融分析。数据挖掘的基本步骤包括数据准备、模型选择、训练、评估和部署。它与数据仓库密切相关,数据仓库为数据挖掘提供高质量数据基础。数据挖掘的应用包括市场分析、风险评估、医疗健康、智能制造和社交媒体分析。关键技术和工具包括分类算法、聚类算法和关联规则。
数据挖掘
0
2024-09-14